Inheritance of inflorescence architecture in sorghum

被引:108
作者
Brown, P. J.
Klein, P. E.
Bortiri, E.
Acharya, C. B.
Rooney, W. L.
Kresovich, S.
机构
[1] Cornell Univ, Inst Genome Divers, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA
[3] Texas A&M Univ, Inst Plant Genom & Biotechnol, College Stn, TX 77843 USA
[4] Texas A&M Univ, Dept Hort, College Stn, TX 77843 USA
[5] Univ Calif Berkeley, Ctr Plant Gene Express, Dept Plant & Microbial Biol, Albany, CA 94710 USA
[6] Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA
关键词
inflorescence architecture; sorghum; quantitative trait locus; candidate gene;
D O I
10.1007/s00122-006-0352-9
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The grass inflorescence is the primary food source for humanity, and has been repeatedly shaped by human selection during the domestication of different cereal crops. Of all major cultivated cereals, sorghum [Sorghum bicolor (L.) Moench] shows the most striking variation in inflorescence architecture traits such as branch number and branch length, but the genetic basis of this variation is little understood. To study the inheritance of inflorescence architecture in sorghum, 119 recombinant inbred lines from an elite by exotic cross were grown in three environments and measured for 15 traits, including primary, secondary, and tertiary inflorescence branching. Eight characterized genes that are known to control inflorescence architecture in maize (Zea mays L.) and other grasses were mapped in sorghum. Two of these candidate genes, Dw3 and the sorghum ortholog of ramosa2, co-localized precisely with QTL of large effect for relevant traits. These results demonstrate the feasibility of using genomic and mutant resources from maize and rice (Oryza sativa L.) to investigate the inheritance of complex traits in related cereals.
引用
收藏
页码:931 / 942
页数:12
相关论文
共 46 条
[1]  
[Anonymous], 1988, ECON BOT
[2]   Cytokinin oxidase regulates rice grain production [J].
Ashikari, M ;
Sakakibara, H ;
Lin, SY ;
Yamamoto, T ;
Takashi, T ;
Nishimura, A ;
Angeles, ER ;
Qian, Q ;
Kitano, H ;
Matsuoka, M .
SCIENCE, 2005, 309 (5735) :741-745
[3]   Sorghum genome sequencing by methylation filtration [J].
Bedell, JA ;
Budiman, MA ;
Nunberg, A ;
Citek, RW ;
Robbins, D ;
Jones, J ;
Flick, E ;
Rohlfing, T ;
Fries, J ;
Bradford, K ;
McMenamy, J ;
Smith, M ;
Holeman, H ;
Roe, BA ;
Wiley, G ;
Korf, IF ;
Rabinowicz, PD ;
Lakey, N ;
McCombie, WR ;
Jeddeloh, JA ;
Martienssen, RA .
PLOS BIOLOGY, 2005, 3 (01) :103-115
[4]   Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize [J].
Bomblies, K ;
Wang, RL ;
Ambrose, BA ;
Schmidt, RJ ;
Meeley, RB ;
Doebley, J .
DEVELOPMENT, 2003, 130 (11) :2385-2395
[5]   Genetics and evolution of inflorescence and flower development in grasses [J].
Bommert, P ;
Satoh-Nagasawa, N ;
Jackson, D ;
Hirano, HY .
PLANT AND CELL PHYSIOLOGY, 2005, 46 (01) :69-78
[6]   ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize [J].
Bortiri, E ;
Chuck, G ;
Vollbrecht, E ;
Rocheford, T ;
Martienssen, R ;
Hake, S .
PLANT CELL, 2006, 18 (03) :574-585
[7]   A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase [J].
Bout, S ;
Vermerris, W .
MOLECULAR GENETICS AND GENOMICS, 2003, 269 (02) :205-214
[8]  
Brown D, 2000, MAPPOP 1 0 SOFTWARE
[9]   The sorghum photoperiod sensitivity gene, Ma(3), encodes a phytochrome B [J].
Childs, KL ;
Miller, FR ;
CordonnierPratt, MM ;
Pratt, LH ;
Morgan, PW ;
Mullet, JE .
PLANT PHYSIOLOGY, 1997, 113 (02) :611-619
[10]   The control of spikelet meristem identity by the branched silkless1 gene in maize [J].
Chuck, G ;
Muszynski, M ;
Kellogg, E ;
Hake, S ;
Schmidt, RJ .
SCIENCE, 2002, 298 (5596) :1238-1241