Fast trilayer polypyrrole bending actuators for high speed applications

被引:151
作者
Wu, Y. [1 ]
Alici, G. [1 ]
Spinks, G. M. [1 ]
Wallace, G. G. [1 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
polypyrrole; actuator; amplitude; frequency; speed;
D O I
10.1016/j.synthmet.2006.06.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesis and performance evaluation of trilayer bending type polymer actuators in terms of frequency response and step response are described. The actuators are shown to achieve mechanical resonance at up to 90 Hz and giving tip displacements up to 60 mm for an input voltage of +/- 1 V at 4 Hz. Polypyrrole doped with trifluoromethanesulfonimide (TFSI) had a considerably higher speed of response when compared to polypyrrole-hexafluorophosphate (PF6) actuator with the same dimensions. The TFSI doped polypyrrole showed faster charging rates, likely due to higher ion diffusion rates through a gel-like polymer structure, thereby producing faster actuation response. These new actuators may be useful for applications requiring a high speed of response, e.g. a propulsion element for a swimming device/robotic fish. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1017 / 1022
页数:6
相关论文
共 24 条
[1]   A methodology towards geometry optimization of high performance polypyrrole (PPy) actuators [J].
Alici, G ;
Metz, P ;
Spinks, GM .
SMART MATERIALS AND STRUCTURES, 2006, 15 (02) :243-252
[2]   Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications [J].
Alici, G ;
Mui, B ;
Cook, C .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 126 (02) :396-404
[3]   Mechanism of actuation in conducting polymers: Osmotic expansion [J].
Bay, L ;
Jacobsen, T ;
Skaarup, S ;
West, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (36) :8492-8497
[4]   High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects [J].
Ding, J ;
Liu, L ;
Spinks, GM ;
Zhou, DZ ;
Wallace, GG ;
Gillespie, J .
SYNTHETIC METALS, 2003, 138 (03) :391-398
[5]   MECHANISM OF ELECTROMECHANICAL ACTUATION IN POLYPYRROLE [J].
GANDHI, MR ;
MURRAY, P ;
SPINKS, GM ;
WALLACE, GG .
SYNTHETIC METALS, 1995, 73 (03) :247-256
[6]   Free-standing gel-like polypyrrole actuators doped with bis(perfluoroalkylsulfonyl)imide exhibiting extremely large strain [J].
Hara, S ;
Zama, T ;
Takashima, W ;
Kaneto, K .
SMART MATERIALS AND STRUCTURES, 2005, 14 (06) :1501-1510
[7]   Polypyrrole microactuators [J].
Jager, EWH ;
Smela, E ;
Inganäs, O ;
Lundström, I .
SYNTHETIC METALS, 1999, 102 (1-3) :1309-1310
[8]   Electrolyte and strain dependences of chemomechanical deformation of polyaniline film [J].
Kaneko, M ;
Fukui, M ;
Takashima, W ;
Kaneto, K .
SYNTHETIC METALS, 1997, 84 (1-3) :795-796
[9]   Fast contracting polypyrrole actuators [J].
Madden, JD ;
Cush, RA ;
Kanigan, TS ;
Hunter, IW .
SYNTHETIC METALS, 2000, 113 (1-2) :185-192
[10]   Artificial muscle technology: Physical principles and naval prospects [J].
Madden, JDW ;
Vandesteeg, NA ;
Anquetil, PA ;
Madden, PGA ;
Takshi, A ;
Pytel, RZ ;
Lafontaine, SR ;
Wieringa, PA ;
Hunter, IW .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2004, 29 (03) :706-728