New no-scalar-hair theorem for black holes

被引:71
作者
Saa, A
机构
[1] Depto. de Fis. de Partículas, Univ. de Santiago de Compostela
关键词
D O I
10.1063/1.531513
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new no-hair theorem is formulated which rules out a very large class of nonminimally coupled finite scalar dressing of an asymptotically flat, static, and spherically symmetric black hole. The proof is very simple and based on a covariant method for generating solutions for nonminimally coupled scalar fields starting from the minimally coupled case. Such a method generalizes the Bekenstein method for conformal coupling and other recent ones. We also discuss the role of the finiteness assumption for the scalar field. (C) 1996 American Institute of Physics.
引用
收藏
页码:2346 / 2351
页数:6
相关论文
共 24 条
[1]   CLASSICAL EQUIVALENCE OF LAMBDA-R-PHI-2 THEORIES [J].
ACCIOLY, AJ ;
WICHOSKI, UF ;
KWOK, SF ;
DASILVA, NLPP .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (12) :L215-L219
[2]   NONEXISTENCE OF BARYON NUMBER FOR STATIC BLACK HOLES [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1972, 5 (06) :1239-+
[3]   NOVEL NO-SCALAR-HAIR THEOREM FOR BLACK-HOLES [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1995, 51 (12) :R6608-R6611
[4]   EXACT SOLUTIONS OF EINSTEIN-CONFORMAL SCALAR EQUATIONS [J].
BEKENSTEIN, JD .
ANNALS OF PHYSICS, 1974, 82 (02) :535-547
[5]   GRAVITATIONAL LENSES AND UNCONVENTIONAL GRAVITY THEORIES [J].
BEKENSTEIN, JD ;
SANDERS, RH .
ASTROPHYSICAL JOURNAL, 1994, 429 (02) :480-490
[6]   TRANSCENDENCE OF LAW OF BARYON-NUNBER CONSERVATION IN BLACK HOLE PHYSICS [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW LETTERS, 1972, 28 (07) :452-+
[7]   NONEXISTENCE OF BARYON NUMBER FOR BLACK HOLES .2. [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1972, 5 (10) :2403-+
[8]   EVENT HORIZONS IN STATIC SCALAR-VACUUM SPACE-TIMES [J].
CHASE, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 19 (04) :276-&
[9]   LONG-RANGE NEUTRINO FORCES EXERTED BY KERR BLACK HOLES [J].
HARTLE, JB .
PHYSICAL REVIEW D, 1971, 3 (12) :2938-&
[10]   BLACK HOLES IN BRANS-DICKE - THEORY OF GRAVITATION [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (02) :167-&