The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold

被引:153
作者
Zhang, Shu [1 ]
Gross, Adam F. [2 ]
Van Atta, Sky L. [2 ]
Lopez, Maribel [3 ]
Liu, Ping [2 ]
Ahn, Channing C. [3 ]
Vajo, John J. [2 ]
Jensen, Craig M. [1 ]
机构
[1] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA
[2] HRL Labs LLC, Malibu, CA 90265 USA
[3] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
METAL-HYDRIDES; NANOCRYSTALLINE MAGNESIUM; THERMAL-DECOMPOSITION; ALUMINUM HYDRIDES; REACTION-KINETICS; COMPLEX HYDRIDES; SYSTEMS; DESTABILIZATION; ENERGETICS; NB2O5;
D O I
10.1088/0957-4484/20/20/204027
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new approach to the incorporation of MgH2 in the nanometer-sized pores of a carbon aerogel scaffold was developed, by infiltrating the aerogel with a solution of dibutylmagnesium (MgBu2) precursor, and then hydrogenating the incorporated MgBu2 to MgH2. The resulting impregnated material showed broad x-ray diffraction peaks of MgH2. The incorporated MgH2 was not visible using a transmission electron microscope, which indicated that the incorporated hydride was nanosized and confined in the nanoporous structure of the aerogel. The loading of MgH2 was determined as 15-17 wt%, of which 75% is reversible over ten cycles. Incorporated MgH2 had >5 times faster dehydrogenation kinetics than ball-milled activated MgH2, which may be attributed to the particle size of the former being smaller than that of the latter. Cycling tests of the incorporated MgH2 showed that the dehydrogenation kinetics are unchanged over four cycles. Our results demonstrate that confinement of metal hydride materials in a nanoporous scaffold is an efficient way to avoid aggregation and improve cycling kinetics for hydrogen storage materials.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst [J].
Barkhordarian, G ;
Klassen, T ;
Bormann, R .
SCRIPTA MATERIALIA, 2003, 49 (03) :213-217
[2]   Effect of Nb2O5 content on hydrogen reaction kinetics of Mg [J].
Barkhordarian, G ;
Klassen, T ;
Bormann, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 364 (1-2) :242-246
[3]   HYDROGENOLYSIS OF GRIGNARD REAGENT [J].
BECKER, WE ;
ASHBY, EC .
JOURNAL OF ORGANIC CHEMISTRY, 1964, 29 (04) :954-&
[4]   Impact of nanostructuring on the enthalpy of formation of metal hydrides [J].
Berube, Vincent ;
Chen, Gang ;
Dresselhaus, M. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (15) :4122-4131
[5]   Size effects on the hydrogen storage properties of nanostructured metal hydrides:: A review [J].
Berube, Vincent ;
Radtke, Gregg ;
Dresselhaus, Mildred ;
Chen, Gang .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (6-7) :637-663
[6]   Complex aluminum hydrides [J].
Bogdanovic, B. ;
Eberle, U. ;
Felderhoff, M. ;
Schueth, F. .
SCRIPTA MATERIALIA, 2007, 56 (10) :813-816
[7]   ACTIVE MGH2-MG SYSTEMS FOR REVERSIBLE CHEMICAL ENERGY-STORAGE [J].
BOGDANOVIC, B ;
RITTER, A ;
SPLIETHOFF, B .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1990, 29 (03) :223-234
[8]   Catalyzed complex metal hydrides [J].
Bogdanovic, B ;
Sandrock, G .
MRS BULLETIN, 2002, 27 (09) :712-716
[9]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58
[10]   ReaxFFMgH reactive force field for magnesium hydride systems [J].
Cheung, S ;
Deng, WQ ;
van Duin, ACT ;
Goddard, WA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (05) :851-859