Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context

被引:48
作者
Apicella, Paul [1 ]
Deffains, Marc [1 ]
Ravel, Sabrina [1 ]
Legallet, Eric [1 ]
机构
[1] Univ Aix Marseille 1, CNRS, Lab Neurobiol Cognit, F-13331 Marseille 3, France
关键词
error detection; learning; prediction; primate; putamen; PREDICTION ERRORS; MIDBRAIN DOPAMINE; MONKEY STRIATUM; BASAL GANGLIA; PRIMATE STRIATUM; RESPONSES; ENCODE; PUTAMEN; EXPECTATION; ACCUMBENS;
D O I
10.1111/j.1460-9568.2009.06872.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Tonically active neurons (TANs) in the primate striatum are responsive to rewarding stimuli and they are thought to be involved in the storage of stimulus-reward associations or habits. However, it is unclear whether these neurons may signal the difference between the prediction of reward and its actual outcome as a possible neuronal correlate of reward prediction errors at the striatal level. To address this question, we studied the activity of TANs from three monkeys trained in a classical conditioning task in which a liquid reward was preceded by a visual stimulus and reward probability was systematically varied between blocks of trials. The monkeys' ability to discriminate the conditions according to probability was assessed by monitoring their mouth movements during the stimulus-reward interval. We found that the typical TAN pause responses to the delivery of reward were markedly enhanced as the probability of reward decreased, whereas responses to the predictive stimulus were somewhat stronger for high reward probability. In addition, TAN responses to the omission of reward consisted of either decreases or increases in activity that became stronger with increasing reward probability. It therefore appears that one group of neurons differentially responded to reward delivery and reward omission with changes in activity into opposite directions, while another group responded in the same direction. These data indicate that only a subset of TANs could detect the extent to which reward occurs differently than predicted, thus contributing to the encoding of positive and negative reward prediction errors that is relevant to reinforcement learning.
引用
收藏
页码:515 / 526
页数:12
相关论文
共 43 条
[1]   Prediction error as a linear function of reward probability is coded in human nucleus accumbens [J].
Abler, Birgit ;
Walter, Henrik ;
Erk, Susanne ;
Kammerer, Hannes ;
Spitzer, Manfred .
NEUROIMAGE, 2006, 31 (02) :790-795
[2]  
AOSAKI T, 1994, J NEUROSCI, V14, P3969
[3]   Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states [J].
Apicella, P ;
Legallet, E ;
Trouche, E .
EXPERIMENTAL BRAIN RESEARCH, 1997, 116 (03) :456-466
[4]   Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events [J].
Apicella, P .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2002, 16 (11) :2017-2026
[5]   Leading tonically active neurons of the striatum from reward detection to context recognition [J].
Apicella, Paul .
TRENDS IN NEUROSCIENCES, 2007, 30 (06) :299-306
[6]   Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories [J].
Barnes, TD ;
Kubota, Y ;
Hu, D ;
Jin, DZZ ;
Graybiel, AM .
NATURE, 2005, 437 (7062) :1158-1161
[7]   Statistics of midbrain dopamine neuron spike trains in the awake primate [J].
Bayer, Hannah M. ;
Lau, Brian ;
Glimcher, Paul W. .
JOURNAL OF NEUROPHYSIOLOGY, 2007, 98 (03) :1428-1439
[8]   Midbrain dopamine neurons encode a quantitative reward prediction error signal [J].
Bayer, HM ;
Glimcher, PW .
NEURON, 2005, 47 (01) :129-141
[9]   A network representation of response probability in the striaturn [J].
Blazquez, PM ;
Fujii, N ;
Kojima, J ;
Graybiel, AM .
NEURON, 2002, 33 (06) :973-982
[10]   Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum [J].
Brasted, PJ ;
Wise, SP .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 19 (03) :721-740