Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli

被引:29
作者
Barak, R [1 ]
Eisenbach, M [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
acetylation; phosphorylation; bacterial chemotaxis; acetyl-CoA synthetase; CheY;
D O I
10.1016/j.jmb.2004.07.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CheY, a response regulator of the chemotaxis system in Escherichia coli, can be activated by either phosphorylation or acetylation to generate clockwise rotation of the flagellar motor. Both covalent modifications are involved in chemotaxis, but the function of the latter remains obscure. To understand why two different modifications apparently activate the same function of CheY, we studied the effect that each modification exerts on the other. The phosphodonors of CheY, the histidine kinase CheA and acetyl phosphate, each strongly inhibited both the autoacetylation of the acetylating enzyme, acetyl-CoA synthetase (Acs), and the acetylation of CheY. CheZ, the enzyme that enhances CheY dephosphorylation, had the opposite effect and enhanced Acs autoacetylation and CheY acetylation. These effects of the phosphodonors and CheZ were not caused by their respective activities. Rather, they were caused by their interactions with Acs and, possibly, with CheY. In addition, the presence of Acs elevated the phosphorylation levels of both CheA and CheY, and acetate repressed this stimulation. These observations suggest that CheY phosphorylation and acetylation are linked and co-regulated. We propose that the physiological role of these mutual effects is at two levels: linking chemotaxis to the metabolic state of the cell, and serving as a tuning mechanism that compensates for cell-to-cell variations in the concentrations of CheA and CheZ. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:375 / 381
页数:7
相关论文
共 39 条
[1]   Robustness in bacterial chemotaxis [J].
Alon, U ;
Surette, MG ;
Barkai, N ;
Leibler, S .
NATURE, 1999, 397 (6715) :168-171
[2]   Both acetate kinase and acetyl coenzyme A synthetase are involved in acetate-stimulated change in the direction of flagellar rotation in Escherichia coli [J].
Barak, R ;
Abouhamad, WN ;
Eisenbach, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :985-988
[3]   Acetylation of the chemicals response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli [J].
Barak, R ;
Prasad, K ;
Shainskaya, A ;
Wolfe, AJ ;
Eisenbach, M .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 342 (02) :383-401
[4]   CORRELATION BETWEEN PHOSPHORYLATION OF THE CHEMOTAXIS PROTEIN-CHEY AND ITS ACTIVITY AT THE FLAGELLAR MOTOR [J].
BARAK, R ;
EISENBACH, M .
BIOCHEMISTRY, 1992, 31 (06) :1821-1826
[5]   Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis [J].
Barak, R ;
Eisenbach, M .
MOLECULAR MICROBIOLOGY, 2001, 40 (03) :731-743
[6]   ACETYLADENYLATE OR ITS DERIVATIVE ACETYLATES THE CHEMOTAXIS PROTEIN CHEY INVITRO AND INCREASES ITS ACTIVITY AT THE FLAGELLAR SWITCH [J].
BARAK, R ;
WELCH, M ;
YANOVSKY, A ;
OOSAWA, K ;
EISENBACH, M .
BIOCHEMISTRY, 1992, 31 (41) :10099-10107
[7]   PHOSPHORYLATION-DEPENDENT BINDING OF THE CHEMOTAXIS SIGNAL MOLECULE CHEY TO ITS PHOSPHATASE, CHEZ [J].
BLAT, Y ;
EISENBACH, M .
BIOCHEMISTRY, 1994, 33 (04) :902-906
[8]   Regulation of phosphatase activity in bacterial chemotaxis [J].
Blat, Y ;
Gillespie, B ;
Bren, A ;
Dahlquist, FW ;
Eisenbach, M .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (04) :1191-1199
[9]   Mutants with defective phosphatase activity show no phosphorylation-dependent oligomerization of CheZ - The phosphatase of bacterial chemotaxis [J].
Blat, Y ;
Eisenbach, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (02) :1232-1236
[10]   Oligomerization of the phosphatase CheZ upon interaction with the phosphorylated form of CheY - The signal protein of bacterial chemotaxis [J].
Blat, Y ;
Eisenbach, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (02) :1226-1231