Inhibition of cloned human L-type cardiac calcium channels by 2,3-butanedione monoxime does not require PKA-dependent phosphorylation sites

被引:13
作者
Eisfeld, J
Mikala, G
Varadi, G
Schwartz, A
Klockner, U
机构
[1] UNIV CINCINNATI, INST MOL PHARMACOL & BIOPHYS, COLL MED, CINCINNATI, OH 45267 USA
[2] UNIV COLOGNE, DEPT PHYSIOL, D-50931 COLOGNE, GERMANY
关键词
D O I
10.1006/bbrc.1996.5852
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The oxime derivative 2,3-butanedione monoxime (BDM) is used as an inorganic phosphatase to probe the phosphorylation state of many cellular proteins including the L-type calcium channel in various tissues. We used BDM further to shed light on the controversy surrounding direct phosphorylation of the L-type Ca2+ channel. We employed a recombinant system that utilizes HEK 293 cells expressing wild type and mutant human heart calcium channels. BDM reversibly reduced the calcium channel current induced by expression of the wild type channel in a concentration-dependent manner with an apparent IC50 value of 15.3 mM. Deletion of part of the carboxyl terminus of the alpha(1) subunit, which contains one putative protein kinase A site, or mutating all of the protein kinase A consensus sites of the pore forming subunit, did not significantly change the apparent IC50 value or alter in any other way the blocking effect of BDM on the expressed currents. Our data suggest that BDM produces reversible modifications of the cardiac calcium channel protein leading to an expected reduction in the amplitude of the expressed currents, but the site of action must be different from that of the consensus sites for protein kinase A dependent phosphorylation. (C) 1997 Academic Press.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 23 条