Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus

被引:103
作者
Elliott, C
Zhou, FS
Spielmeyer, W
Panstruga, R
Schulze-Lefert, P
机构
[1] Max Planck Inst Zuchtungsforsch, Dept Plant Microbe Interact, D-50829 Cologne, Germany
[2] John Innes Ctr Plant Sci Res, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
[3] CSIRO, Canberra, ACT 2601, Australia
关键词
nonhost resistance; transient expression;
D O I
10.1094/MPMI.2002.15.10.1069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Homologs of barley Mlo are found in syntenic positions in all three genomes of hexaploid bread wheat, Triticum aestivum, and in rice, Oryza sativa. Candidate wheat orthologs, designated TaMlo-A1, TaMlo-B1, and TaMlo-D1, encode three distinct but highly related proteins that are 88% identical to barley MLO and appear to originate from the three diploid ancestral genomes of wheat. TaMlo-B1 and the rice ortholog, OsMlo2, are able to complement powdery mildew-resistant barley mlo mutants at the single-cell level. Overexpression of TaMlo-B1 or barley Mlo leads to super-susceptibility to the appropriate powdery mildew formae speciales in both wild-type barley and wheat. Surprisingly, overexpression of either Mlo or TaMlo-B1 also mediates enhanced fungal development to tested inappropriate formae speciales. These results underline a regulatory role for MLO and its wheat and rice orthologs in a basal defense mechanism that can interfere with forma specialis resistance to powdery mildews.
引用
收藏
页码:1069 / 1077
页数:9
相关论文
共 41 条
[1]   The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance [J].
Azevedo, C ;
Sadanandom, A ;
Kitagawa, K ;
Freialdenhoven, A ;
Shirasu, K ;
Schulze-Lefert, P .
SCIENCE, 2002, 295 (5562) :2073-2076
[2]   The barley mlo gene: A novel control element of plant pathogen resistance [J].
Buschges, R ;
Hollricher, K ;
Panstruga, R ;
Simons, G ;
Wolter, M ;
Frijters, A ;
vanDaelen, R ;
vanderLee, T ;
Diergaarde, P ;
Groenendijk, J ;
Topsch, S ;
Vos, P ;
Salamini, F ;
Schulze-Lefert, P .
CELL, 1997, 88 (05) :695-705
[3]   Genome relationships: The grass model in current research [J].
Devos, KM ;
Gale, MD .
PLANT CELL, 2000, 12 (05) :637-646
[4]   Comparative genetics in the grasses [J].
Devos, KM ;
Gale, MD .
PLANT MOLECULAR BIOLOGY, 1997, 35 (1-2) :3-15
[5]   Topology, subcellular localization, and sequence diversity of the Mlo family in plants [J].
Devoto, A ;
Piffanelli, P ;
Nilsson, I ;
Wallin, E ;
Panstruga, R ;
von Heijne, G ;
Schulze-Lefert, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :34993-35004
[6]  
DEVOTO A, IN PRESS J MOL EVOL
[7]   Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement [J].
Dubcovsky, J ;
Lijavetzky, D ;
Appendino, L ;
Tranquilli, G .
THEORETICAL AND APPLIED GENETICS, 1998, 97 (5-6) :968-975
[8]   Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes [J].
Dubcovsky, J ;
Ramakrishna, W ;
SanMiguel, PJ ;
Busso, CS ;
Yan, LL ;
Shiloff, BA ;
Bennetzen, JL .
PLANT PHYSIOLOGY, 2001, 125 (03) :1342-1353
[9]   CONSERVATION OF FINE-SCALE DNA MARKER ORDER IN THE GENOMES OF RICE AND THE TRITICEAE [J].
DUNFORD, RP ;
KURATA, N ;
LAURIE, DA ;
MONEY, TA ;
MINOBE, Y ;
MOORE, G .
NUCLEIC ACIDS RESEARCH, 1995, 23 (14) :2724-2728
[10]   High gene density is conserved at syntenic loci of small and large grass genomes [J].
Feuillet, C ;
Keller, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) :8265-8270