Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography

被引:264
作者
Trabuco, Leonardo G. [2 ,3 ]
Villa, Elizabeth [2 ,3 ]
Schreiner, Eduard [2 ]
Harrison, Christopher B. [2 ]
Schulten, Klaus [1 ,2 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
MDFF; Flexible fitting; Cryo-EM; X-ray crystallography; NAMD; VMD; Docking; EMPIRICAL FORCE-FIELD; LOW-RESOLUTION; CRYO-EM; ELECTRON-MICROSCOPY; MULTIRESOLUTION STRUCTURES; STRUCTURE REFINEMENT; PROTEIN STRUCTURES; NUCLEIC-ACIDS; DENSITY MAPS; SIMULATIONS;
D O I
10.1016/j.ymeth.2009.04.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Hybrid computational methods for combining structural data from different sources and resolutions are becoming an essential part of structural biology, especially as the field moves toward the study of large macromolecular assemblies. We have developed the molecular dynamics flexible fitting (MDFF) method for combining high-resolution atomic structures with cryo-electron microscopy (cryo-EM) maps, that results in atomic models representing the conformational state captured by cryo-EM. The method has been applied successfully to the ribosome, a ribonucleoprotein complex responsible for protein synthesis. MDFF involves a molecular dynamics simulation in which a guiding potential, based on the cryo-EM map, is added to the standard force field. Forces proportional to the gradient of the density map guide an atomic structure, available from X-ray crystallography, into high-density regions of a cryo-EM map. In this paper we describe the necessary steps to set up, run, and analyze MDFF simulations and the software packages that implement the corresponding functionalities. (c) 2009 Elsevier Inc. All rights reserved
引用
收藏
页码:174 / 180
页数:7
相关论文
共 48 条
[1]   STOCHASTIC BOUNDARY-CONDITIONS FOR MOLECULAR-DYNAMICS SIMULATIONS OF ST2 WATER [J].
BRUNGER, A ;
BROOKS, CL ;
KARPLUS, M .
CHEMICAL PHYSICS LETTERS, 1984, 105 (05) :495-500
[2]   RESTRAINED REAL-SPACE MACROMOLECULAR ATOMIC REFINEMENT USING A NEW RESOLUTION-DEPENDENT ELECTRON-DENSITY FUNCTION [J].
CHAPMAN, MS .
ACTA CRYSTALLOGRAPHICA SECTION A, 1995, 51 :69-80
[3]   Low-resolution structure refinement in electron microscopy [J].
Chen, JZ ;
Fürst, J ;
Chapman, MS ;
Grigorieff, N .
JOURNAL OF STRUCTURAL BIOLOGY, 2003, 144 (1-2) :144-151
[4]   Real space refinement of acto-myosin structures from sectioned muscle [J].
Chen, LF ;
Blanc, E ;
Chapman, MS ;
Taylor, KA .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 133 (2-3) :221-232
[5]  
Foloppe N, 2000, J COMPUT CHEM, V21, P86, DOI 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO
[6]  
2-G
[7]  
Frank J., 2006, Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state
[8]  
Frenkel D., 2002, UNDERSTANDING MOL SI, V2nd edn
[9]   Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics [J].
Grayson, P ;
Tajkhorshid, E ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2003, 85 (01) :36-48
[10]   Ligand binding: Molecular mechanics calculation of the streptavidin biotin rupture force [J].
Grubmuller, H ;
Heymann, B ;
Tavan, P .
SCIENCE, 1996, 271 (5251) :997-999