Determining Hysteresis Thresholds for Edge Detection by Combining the Advantages and Disadvantages of Thresholding Methods

被引:47
作者
Medina-Carnicer, R. [1 ]
Carmona-Poyato, A. [1 ]
Munoz-Salinas, R. [1 ]
Madrid-Cuevas, F. J. [1 ]
机构
[1] Univ Cordoba, Dept Comp & Numer Anal, E-14071 Cordoba, Spain
关键词
Edge detection; hysteresis; segmentation; IMAGE SEGMENTATION; SELECTION; ROBUST;
D O I
10.1109/TIP.2009.2032942
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hysteresis is an important technique for edge detection, but the unsupervised determination of its parameters is not an easy problem. In this paper, we propose a method for unsupervised determination of hysteresis thresholds using the advantages and disadvantages of two thresholding methods. The basic idea of our method is to look for the best hysteresis thresholds in a set of candidates. First, the method finds a subset and a overset of the unknown edge points set. Then, it determines the best edge map with the measure chi(2). Compared with a general method to determine the parameters of an edge detector, our method performs well and is less computationally complex. The basic idea of our method can be generalized to other pattern recognition problems.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 21 条
  • [1] [Anonymous], 1992, ROBUST COMPUTER VISI
  • [2] Robust and automated unimodal histogram thresholding and potential applications
    Baradez, MO
    McGuckin, CP
    Forraz, N
    Pettengell, R
    Hoppe, A
    [J]. PATTERN RECOGNITION, 2004, 37 (06) : 1131 - 1148
  • [4] Demosaicing of Color Filter Array Captured Images Using Gradient Edge Detection Masks and Adaptive Heterogeneity-Projection
    Chung, Kuo-Liang
    Yang, Wei-Jen
    Yan, Wen-Ming
    Wang, Chung-Chou
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (12) : 2356 - 2367
  • [5] A morphological gradient approach to color edge detection
    Evans, Adrian N.
    Liu, Xin U.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (06) : 1454 - 1463
  • [6] Automatic generation of consensus ground truth for the comparison of edge detection techniques
    Fernandez-Garcia, N. L.
    Carmona-Poyato, A.
    Medina-Carnicer, R.
    Madrid-Cuevas, F. J.
    [J]. IMAGE AND VISION COMPUTING, 2008, 26 (04) : 496 - 511
  • [7] Characterization of empirical discrepancy evaluation measures
    Fernández-García, NL
    Medina-Carnicer, R
    Carmona-Poyato, A
    Madrid-Cuevas, FJ
    Prieto-Villegas, M
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (01) : 35 - 47
  • [8] A SURVEY ON IMAGE SEGMENTATION
    FU, KS
    MUI, JK
    [J]. PATTERN RECOGNITION, 1981, 13 (01) : 3 - 16
  • [9] Hancock E. R., 1991, Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (91CH2983-5), P196, DOI 10.1109/CVPR.1991.139687
  • [10] A robust visual method for assessing the relative performance of edge-detection algorithms
    Heath, MD
    Sarkar, S
    Sanocki, T
    Bowyer, KW
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (12) : 1338 - 1359