Sequence-resolved detecton of pausing by single RNA polymerase molecules

被引:218
作者
Herbert, Kristina M. [1 ]
La Porta, Arthur
Wong, Becky J.
Mooney, Rachel A.
Neuman, Keir C.
Landick, Robert
Block, Steven M.
机构
[1] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[3] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
[4] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
关键词
D O I
10.1016/j.cell.2006.04.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional pausing by RNA polymerase (RNAP) plays an important role in the regulation of gene expression. Defined, sequence-specific pause sites have been identified biochemically. Single-molecule studies have also shown that bacterial RNAP pauses frequently during transcriptional elongation, but the relationship of these "ubiquitous" pauses to the underlying DNA sequence has been uncertain. We employed an ultrastable optical-trapping assay to follow the motion of individual molecules of RNAP transcribing templates engineered with repeated sequences carrying imbedded, sequence-specific pause sites of known regulatory function. Both the known and ubiquitous pauses appeared at reproducible locations, identified with base-pair accuracy. Ubiquitous pauses were associated with DNA sequences that show similarities to regulatory pause sequences. Data obtained for the lifetimes and efficiencies of pauses support a model where the transition to pausing branches off of the normal elongation pathway and is mediated by a common elemental state, which corresponds to the ubiquitous pause.
引用
收藏
页码:1083 / 1094
页数:12
相关论文
共 49 条
[1]   Direct observation of base-pair stepping by RNA polymerase [J].
Abbondanzieri, EA ;
Greenleaf, WJ ;
Shaevitz, JW ;
Landick, R ;
Block, SM .
NATURE, 2005, 438 (7067) :460-465
[2]   Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS [J].
Adelman, K ;
Marr, MT ;
Werner, J ;
Saunders, A ;
Ni, ZY ;
Andrulis, ED ;
Lis, JT .
MOLECULAR CELL, 2005, 17 (01) :103-112
[3]   Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior [J].
Adelman, K ;
La Porta, A ;
Santangelo, TJ ;
Lis, JT ;
Roberts, JW ;
Wang, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (21) :13538-13543
[4]  
AIVAZASHVILI V A, 1981, Molekulyarnaya Biologiya (Moscow), V15, P653
[5]  
[Anonymous], 1976, RNA POLYM
[6]  
[Anonymous], 1996, ESCHERICHIA COLI SAL
[7]   Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals [J].
Artsimovitch, I ;
Landick, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7090-7095
[8]   The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand [J].
Artsimovitch, I ;
Landick, R .
CELL, 2002, 109 (02) :193-203
[9]   Sequence-dependent kinetic model for transcription elongation by RNA polymerase [J].
Bai, L ;
Shundrovsky, A ;
Wang, MD .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (02) :335-349
[10]   RfaH and the ops element, components of a novel system controlling bacterial transcription elongation [J].
Bailey, MJA ;
Hughes, C ;
Koronakis, V .
MOLECULAR MICROBIOLOGY, 1997, 26 (05) :845-851