Spectral decomposition of path space in solvable lattice model

被引:12
作者
Arakawa, T
Nakanishi, T
Oshima, K
Tsuchiya, A
机构
[1] Department of Mathematics, Nagoya University, Nagoya 464-01, Chikusa-ku
关键词
D O I
10.1007/BF02101676
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give the spectral decomposition of the path space of the <U-q((sl)over cap (2))> vertex model with respect to the local energy functions. The result suggests the hidden Yangian module structure on the <(sl)over cap (2)> level l integrable modules, which is consistent with the earlier work [1] in the level one case. Also we prove the fermionic character formula of the <(sl)over cap (2)> level l integrable representations in consequence.
引用
收藏
页码:157 / 182
页数:26
相关论文
共 18 条
[1]  
Andrews G. E., 1976, The Theory of Partitions
[2]   8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES [J].
ANDREWS, GE ;
BAXTER, RJ ;
FORRESTER, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) :193-266
[3]  
[Anonymous], ADV STUD PURE MATH
[4]  
Baxter RJ., 1982, Exactly solved models in statistical mechanics
[5]   SPINONS IN CONFORMAL FIELD-THEORY [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
NUCLEAR PHYSICS B, 1994, 428 (03) :612-628
[6]   HIDDEN YANGIANS IN 2D MASSIVE CURRENT-ALGEBRAS [J].
BERNARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (01) :191-208
[7]   SPINON BASIS FOR HIGHER-LEVEL SU(2) WZW MODELS [J].
BOUWKNEGT, P ;
LUDWIG, AWW ;
SCHOUTENS, K .
PHYSICS LETTERS B, 1995, 359 (3-4) :304-312
[8]  
BOUWKNEGT P, 1994, IN PRESS P STAT MECH
[9]  
Chari V., 1990, Enseign. Math., V36, P267
[10]   ONE-DIMENSIONAL CONFIGURATION SUMS IN VERTEX MODELS AND AFFINE LIE-ALGEBRA CHARACTERS [J].
DATE, E ;
JIMBO, M ;
KUNIBA, A ;
MIWA, T ;
OKADO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (01) :69-77