On the distribution of the Wigner time delay in one-dimensional disordered systems

被引:32
作者
Comtet, A
Texier, C
机构
[1] UNIV PARIS 06, CNRS, UNITE RECH, LPTPE, F-75252 PARIS 05, FRANCE
[2] UNIV PARIS 06, DIV PHYS THEOR, CNRS, UNITE RECH, F-91406 ORSAY, FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 23期
关键词
D O I
10.1088/0305-4470/30/23/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the scattering by a one-dimensional random potential and derive the probability distribution of the corresponding Wigner time delay. It is shown that the limiting distribution is the same for two different models and coincides with the one predicted by random matrix theory. It is also shown that the corresponding stochastic process is given by an exponential functional of the potential.
引用
收藏
页码:8017 / 8025
页数:9
相关论文
共 30 条
[1]   THE RELAXATION-TIME SPECTRUM OF DIFFUSION IN A ONE-DIMENSIONAL RANDOM MEDIUM - AN EXACTLY SOLVABLE CASE [J].
BOUCHAUD, JP ;
COMTET, A ;
GEORGES, A ;
LEDOUSSAL, P .
EUROPHYSICS LETTERS, 1987, 3 (06) :653-660
[2]   CLASSICAL DIFFUSION OF A PARTICLE IN A ONE-DIMENSIONAL RANDOM FORCE-FIELD [J].
BOUCHAUD, JP ;
COMTET, A ;
GEORGES, A ;
LEDOUSSAL, P .
ANNALS OF PHYSICS, 1990, 201 (02) :285-341
[3]   Quantum mechanical time-delay matrix in chaotic scattering [J].
Brouwer, PW ;
Frahm, KM ;
Beenakker, CWJ .
PHYSICAL REVIEW LETTERS, 1997, 78 (25) :4737-4740
[4]  
BUTTIKER M, 1990, NATO ADV SCI I B-PHY, V231, P297
[5]  
Carmona P., 1994, STOCHAST REP, V47, P71, DOI 10.1080/17442509408833883
[6]  
CARMONA P, UNPUB DISTRIBUTION A
[7]   LOCALIZATION PROPERTIES IN ONE-DIMENSIONAL DISORDERED SUPERSYMMETRIC QUANTUM-MECHANICS [J].
COMTET, A ;
DESBOIS, J ;
MONTHUS, C .
ANNALS OF PHYSICS, 1995, 239 (02) :312-350
[8]   Diffusion in a one-dimensional random medium and hyperbolic Brownian motion [J].
Comtet, A ;
Monthus, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (07) :1331-1345
[9]  
COMTET A, 1997, IN PRESS J APPL PROB
[10]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M