Transcriptional control of monolignol biosynthesis in Pinus taeda -: Factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism

被引:115
作者
Anterola, AM [1 ]
Jeon, JH [1 ]
Davin, LB [1 ]
Lewis, NG [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA
关键词
D O I
10.1074/jbc.M112051200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/ lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mM) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.
引用
收藏
页码:18272 / 18280
页数:9
相关论文
共 53 条
  • [1] Multi-site modulation of flux during monolignol formation in loblolly pine (Pinus taeda)
    Anterola, AM
    van Rensburg, H
    van Heerden, PS
    Davin, LB
    Lewis, NG
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 261 (03) : 652 - 657
  • [2] ANTEROLA AM, 2002, PHYTOCHEMISTRY
  • [3] ALTERED LIGNIN COMPOSITION IN TRANSGENIC TOBACCO EXPRESSING O-METHYLTRANSFERASE SEQUENCES IN SENSE AND ANTISENSE ORIENTATION
    ATANASSOVA, R
    FAVET, N
    MARTZ, F
    CHABBERT, B
    TOLLIER, MT
    MONTIES, B
    FRITIG, B
    LEGRAND, M
    [J]. PLANT JOURNAL, 1995, 8 (04) : 465 - 477
  • [4] Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility
    Baucher, M
    Bernard-Vailhé, MA
    Chabbert, B
    Besle, JM
    Opsomer, C
    Van Montagu, M
    Botterman, J
    [J]. PLANT MOLECULAR BIOLOGY, 1999, 39 (03) : 437 - 447
  • [5] Baucher M, 1998, CRIT REV PLANT SCI, V17, P125, DOI 10.1016/S0735-2689(98)00360-8
  • [6] Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants
    Chabannes, M
    Barakate, A
    Lapierre, C
    Marita, JM
    Ralph, J
    Pean, M
    Danoun, S
    Halpin, C
    Grima-Pettenati, J
    Boudet, AM
    [J]. PLANT JOURNAL, 2001, 28 (03) : 257 - 270
  • [7] Carbon and nitrogen sensing and signaling in plants: emerging 'matrix effects'
    Coruzzi, GM
    Zhou, L
    [J]. CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (03) : 247 - 253
  • [8] Croteau R., 2000, Biochemistry Molecular Biology of Plants, P1250
  • [9] DESTEVENS G, 1953, P NATL ACAD SCI USA, V39, P80
  • [10] Phenylpropanoid metabolism and lignin biosynthesis: From weeds to trees
    Douglas, CJ
    [J]. TRENDS IN PLANT SCIENCE, 1996, 1 (06) : 171 - 178