A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor

被引:64
作者
Khademi, M. H. [1 ]
Jahanmiri, A. [1 ]
Rahimpour, M. R. [1 ]
机构
[1] Shiraz Univ, Dept Chem Engn, Sch Chem & Petr Engn, Shiraz 71345, Iran
关键词
Hydrogen production; Hydrogen-permselective membrane; Recuperative coupling; Methanol synthesis; Dehydrogenation of cyclohexane; DUSTY-GAS; PD-AG; ENDOTHERMIC REACTIONS; THEORETICAL-ANALYSIS; CATALYST; STEAM; DEHYDROGENATION; PERFORMANCE; SIMULATION; DESIGN;
D O I
10.1016/j.ijhydene.2009.04.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coupling energy intensive endothermic reaction systems with suitable exothermic reactions improve the thermal efficiency of processes and reduce the size of the reactors. One type of reactor suitable for such a type of coupling is the heat-exchanger reactor. In this work, a distributed mathematical model for thermally coupled membrane reactor that is composed of three sides is developed for methanol and benzene synthesis. Methanol synthesis takes place in the exothermic side and supplies the necessary heat for the endothermic dehydrogenation of cyclohexane reaction. Selective permeation of hydrogen through the Pd/Ag membrane is achieved by co-current flow of sweep gas through the permeation side. A steady-state heterogeneous model of the two fixed beds predicts the performance of this novel configuration. The co-current mode is investigated and the simulation results are compared with corresponding predictions for an industrial methanol fixed-bed reactor operated at the same feed conditions. The results show that although methanol productivity is the same as conventional methanol reactor, but benzene is also produced as an additional valuable product in a favorable manner, and auto-thermal conditions are achieved within the both reactors and also pure hydrogen is produced in permeation side. This novel configuration can increase the rate of methanol synthesis reaction and shift the thermodynamics equilibrium. The performance of the reactor is numerically investigated for various key operating variables such as inlet temperatures, molar flow rates of exothermic and endothermic streams, membrane thickness and sweep gas flow rate. The reactor performance is analyzed based on methanol yield, cyclohexane conversion and hydrogen recovery yield. The results suggest that coupling of these reactions in the presence of membrane could be feasible and beneficial. Experimental proof-of-concept is needed to establish the validity and safe operation of the novel reactor. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5091 / 5107
页数:17
相关论文
共 60 条
[1]  
Abashar MEE, 2004, INT J HYDROGEN ENERG, V29, P799, DOI [10.1016/j.ijhydene.2003.09.010, 10.1016/j.jjhydene.2003.09.010]
[2]   Modeling of a novel membrane reactor to integrate dehydrogenation of ethylbenzene to styrene with hydrogenation of nitrobenzene to aniline [J].
Abo-Ghander, Nabeel S. ;
Grace, John R. ;
Elnashaie, Said S. E. H. ;
Lim, C. Jim .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (07) :1817-1826
[3]   Multifunctional reactors: Old preconceptions and new dimensions [J].
Agar, DW .
CHEMICAL ENGINEERING SCIENCE, 1999, 54 (10) :1299-1305
[4]   Kinetic investigations of the deactivation by coking of a noble metal catalyst in the catalytic hydrogenation of nitrobenzene using a catalytic wall reactor [J].
Amon, B ;
Redlingshöfer, H ;
Klemm, E ;
Dieterich, E ;
Emig, G .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 1999, 38 (4-6) :395-404
[5]   Conversion-temperature diagram for a palladium membrane reactor. Analysis of an endothermic reaction: Methane steam reforming [J].
Barbieri, G ;
Marigliano, G ;
Perri, G ;
Drioli, E .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (09) :2017-2026
[6]   Simulation of the methane steam re-forming process in a catalytic Pd-membrane reactor [J].
Barbieri, G ;
DiMaio, FP .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (06) :2121-2127
[7]   Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium [J].
Buxbaum, RE ;
Kinney, AB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (02) :530-537
[8]  
Cussler E. L., 1984, DIFFUSION MASS TRANS
[9]   Process intensification using multifunctional reactors [J].
Dautzenberg, FM ;
Mukherjee, M .
CHEMICAL ENGINEERING SCIENCE, 2001, 56 (02) :251-267
[10]   Modeling and basic characteristics of novel integrated dehydrogenation-hydrogenation membrane catalytic reactors [J].
Elnashaie, SSEH ;
Moustafa, T ;
Alsoudani, T ;
Elshishini, SS .
COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) :1293-1300