On the geometry phase in model-based algorithms for derivative-free optimization

被引:39
作者
Fasano, Giovanni [3 ]
Luis Morales, Jose [2 ]
Nocedal, Jorge [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Inst Tecnol Autonomo Mexico, Dept Matemat, Mexico City, DF, Mexico
[3] Univ Ca Foscari Venezia & INSEAN, Dipartimento Matemat Applicata, Venice, Italy
基金
美国国家科学基金会;
关键词
derivative-free optimization; nonlinear optimization; unconstrained optimization; TRUST REGION METHODS;
D O I
10.1080/10556780802409296
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A numerical study of model-based methods for derivative-free optimization is presented. These methods typically include a geometry phase whose goal is to ensure the adequacy of the interpolation set. The paper studies the performance of an algorithm that dispenses with the geometry phase altogether (and therefore does not attempt to control the position of the interpolation set). Data are presented describing the evolution of the condition number of the interpolation matrix and the accuracy of the gradient estimate, The experiments are performed on smooth unconstrained optimization problems with dimensions ranging between 2 and 15.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 20 条
[1]  
[Anonymous], KNITRO 5 0 USERS MAN
[2]  
[Anonymous], 1993, AMPL, a modeling language for mathematical programming
[3]   Geometry of interpolation sets in derivative free optimization [J].
Conn, A. R. ;
Scheinberg, K. ;
Vicente, Luis N. .
MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) :141-172
[4]  
Conn A. R., 1997, On the convergence of derivative-free methods for unconstrained optimization, P83
[5]   Recent progress in unconstrained nonlinear optimization without derivatives [J].
Conn, AR ;
Scheinberg, K ;
Toint, PL .
MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) :397-414
[6]  
CONN AR, 1998, P 7 AIAA USAF ISSMO
[7]  
Deng G, 2006, PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, P311
[8]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[9]   Wedge trust region methods for derivative free optimization [J].
Marazzi, M ;
Nocedal, J .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :289-305
[10]   COMPUTING A TRUST REGION STEP [J].
MORE, JJ ;
SORENSEN, DC .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (03) :553-572