A Novel In Vitro Multiple-Stress Dormancy Model for Mycobacterium tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen

被引:330
作者
Deb, Chirajyoti
Lee, Chang-Muk
Dubey, Vinod S.
Daniel, Jaiyanth
Abomoelak, Bassam
Sirakova, Tatiana D.
Pawar, Santosh
Rogers, Linda
Kolattukudy, Pappachan E.
机构
[1] Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
来源
PLOS ONE | 2009年 / 4卷 / 06期
关键词
D O I
10.1371/journal.pone.0006077
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Mycobacterium tuberculosis (Mtb) becomes dormant and phenotypically drug resistant when it encounters multiple stresses within the host. Inability of currently available drugs to kill latent Mtb is a major impediment to curing and possibly eradicating tuberculosis (TB). Most in vitro dormancy models, using single stress factors, fail to generate a truly dormant Mtb population. An in vitro model that generates truly dormant Mtb cells is needed to elucidate the metabolic requirements that allow Mtb to successfully go through dormancy, identify new drug targets, and to screen drug candidates to discover novel drugs that can kill dormant pathogen. Methodology/Principal Findings: We developed a novel in vitro multiple-stress dormancy model for Mtb by applying combined stresses of low oxygen (5%), high CO2 (10%), low nutrient (10% Dubos medium) and acidic pH (5.0), conditions Mtb is thought to encounter in the host. Under this condition, Mtb stopped replicating, lost acid-fastness, accumulated triacylglycerol (TG) and wax ester (WE), and concomitantly acquired phenotypic antibiotic-resistance. Putative neutral lipid biosynthetic genes were up-regulated. These genes may serve as potential targets for new antilatency drugs. The triacylglycerol synthase1 (tgs1) deletion mutant, with impaired ability to accumulate TG, exhibited a lesser degree of antibiotic tolerance and complementation restored antibiotic tolerance. Transcriptome analysis with microarray revealed the achievement of dormant state showing repression of energy generation, transcription and translation machineries and induction of stress-responsive genes. We adapted this model for drug screening using the Alamar Blue dye to quantify the antibiotic tolerant dormant cells. Conclusions/Significance: The new in vitro multiple stress dormancy model efficiently generates Mtb cells meeting all criteria of dormancy, and this method is adaptable to high-throughput screening for drugs that can kill dormant Mtb. A critical link between storage-lipid accumulation and development of phenotypic drug-resistance in Mtb was established. Storage lipid biosynthetic genes may be appropriate targets for novel drugs that can kill latent Mtb.
引用
收藏
页数:15
相关论文
共 66 条
[1]   The emergence of extensively drug-resistant tuberculosis (TB): TB/HIV coinfection, multidrug-resistant TB and the resulting public health threat from extensively drug-resistant TB, globally and in Canada [J].
Alexander, Paul E. ;
De, Prithwish .
CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY, 2007, 18 (05) :289-291
[2]   Controlling the false discovery rate in behavior genetics research [J].
Benjamini, Y ;
Drai, D ;
Elmer, G ;
Kafkafi, N ;
Golani, I .
BEHAVIOURAL BRAIN RESEARCH, 2001, 125 (1-2) :279-284
[3]   Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling [J].
Betts, JC ;
Lukey, PT ;
Robb, LC ;
McAdam, RA ;
Duncan, K .
MOLECULAR MICROBIOLOGY, 2002, 43 (03) :717-731
[4]   Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis [J].
Betts, JC ;
McLaren, A ;
Lennon, MG ;
Kelly, FM ;
Lukey, PT ;
Blakemore, SJ ;
Duncan, K .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (09) :2903-2913
[5]   Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice [J].
Bhatt, Apoorva ;
Fujiwara, Nagatoshi ;
Bhatt, Kiranmai ;
Gurcha, Sudagar S. ;
Kremer, Laurent ;
Chen, Bing ;
Chan, John ;
Porcelli, Steven A. ;
Kobayashi, Kazuo ;
Besra, Gurdyal S. ;
Jacobs, William R., Jr. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (12) :5157-5162
[6]   Tuberculosis - Metabolism and respiration in the absence of growth [J].
Boshoff, HIM ;
Barry, CE .
NATURE REVIEWS MICROBIOLOGY, 2005, 3 (01) :70-80
[8]   Microplate Alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium [J].
Collins, LA ;
Franzblau, SG .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (05) :1004-1009
[9]  
COOPER A, 2005, ANIMAL MODELS TUBERC
[10]   Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture [J].
Daniel, J ;
Deb, C ;
Dubey, VS ;
Sirakova, TD ;
Abomoelak, B ;
Morbidoni, HR ;
Kolattukudy, PE .
JOURNAL OF BACTERIOLOGY, 2004, 186 (15) :5017-5030