Sequence determinants in hypoxia-inducible factor-1α for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3

被引:258
作者
Huang, JH [1 ]
Zhao, Q [1 ]
Mooney, SM [1 ]
Lee, FS [1 ]
机构
[1] Univ Penn, Sch Med, Dept Pathol & Lab Med, Stellar Chance Labs 605, Philadelphia, PA 19104 USA
关键词
D O I
10.1074/jbc.M206955200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor induced by hypoxia. Under normoxic conditions, site-specific proline hydroxylation of the alpha subunits of HIF allows recognition by the von Hippel-Lindau tumor suppressor protein (VHL), a component of an E3 ubiquitin ligase complex that targets these subunits for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, this hydroxylation is inhibited, allowing the a subunits of HIF to escape VHL-mediated degradation. Three enzymes, prolyl hydroxylase domain-containing proteins 1, 2, and 3 (PHD1, -2, and -3; also known as HIF prolyl hydroxylase 3, 2, and 1, respectively), have recently been identified that catalyze proline hydroxylation of HIF a subunits. These enzymes hydroxylate specific prolines in HIF a subunits in the context of a strongly conserved LXXLAP sequence motif (where X indicates any amino acid and P indicates the hydroxylacceptor proline). We report here that PHD2 has the highest specific activity toward the primary hydroxylation site of HIF-lalpha. Furthermore, and unexpectedly, mutations can be tolerated at the - 5, -2, and - 1 positions (relative to proline) of the LXXLAP motif. Thus, these results provide evidence that the only obligatory residue for proline hydroxylation in HIF-1a is the hydroxylacceptor proline itself.
引用
收藏
页码:39792 / 39800
页数:9
相关论文
共 46 条
[1]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[2]   Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein [J].
Cockman, ME ;
Masson, N ;
Mole, DR ;
Jaakkola, P ;
Chang, GW ;
Clifford, SC ;
Maher, ER ;
Pugh, CW ;
Ratcliffe, PJ ;
Maxwell, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25733-25741
[3]   A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 alpha regulates the VEGF expression and is potentially involved in lung and vascular development [J].
Ema, M ;
Taya, S ;
Yokotani, N ;
Sogawa, K ;
Matsuda, Y ;
FujiiKuriyama, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4273-4278
[4]   Regulation of MAP kinases by docking domains [J].
Enslen, H ;
Davis, RJ .
BIOLOGY OF THE CELL, 2001, 93 (1-2) :5-14
[5]   C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J].
Epstein, ACR ;
Gleadle, JM ;
McNeill, LA ;
Hewitson, KS ;
O'Rourke, J ;
Mole, DR ;
Mukherji, M ;
Metzen, E ;
Wilson, MI ;
Dhanda, A ;
Tian, YM ;
Masson, N ;
Hamilton, DL ;
Jaakkola, P ;
Barstead, R ;
Hodgkin, J ;
Maxwell, PH ;
Pugh, CW ;
Schofield, CJ ;
Ratcliffe, PJ .
CELL, 2001, 107 (01) :43-54
[6]  
Gu YZ, 1998, GENE EXPRESSION, V7, P205
[7]   Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family [J].
Hewitson, KS ;
McNeill, LA ;
Riordan, MV ;
Tian, YM ;
Bullock, AN ;
Welford, RW ;
Elkins, JM ;
Oldham, NJ ;
Bhattacharya, S ;
Gleadle, JM ;
Ratcliffe, PJ ;
Pugh, CW ;
Schofield, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :26351-26355
[8]   Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway [J].
Hogenesch, JB ;
Chan, WK ;
Jackiw, VH ;
Brown, RC ;
Gu, YZ ;
PrayGrant, M ;
Perdew, GH ;
Bradfield, CA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8581-8593
[9]   Structural basis for the recognition of hydroxyproline in αIF-1α by pVHL [J].
Hon, WC ;
Wilson, MI ;
Harlos, K ;
Claridge, TDW ;
Schofield, CJ ;
Pugh, CW ;
Maxwell, PH ;
Ratcliffe, PJ ;
Stuart, DI ;
Jones, EY .
NATURE, 2002, 417 (6892) :975-978
[10]   Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway [J].
Huang, LE ;
Gu, J ;
Schau, M ;
Bunn, HF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :7987-7992