Numerical treatment of defective boundary conditions for the Navier-Stokes equations

被引:135
作者
Formaggia, L [1 ]
Gerbeau, JF
Nobile, F
Quarteroni, A
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
[2] Inst Natl Rech Informat & Automat, Projet M3N, F-78153 Le Chesnay, France
[3] Politecn Milan, Dipartimento Matemat Francesco Brioschi, I-20133 Milan, Italy
关键词
Navier-Stokes equations; boundary conditions; finite element; Lagrange multipliers; fractional step methods; simulation of blood flow;
D O I
10.1137/S003614290038296X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a formulation for accommodating defective boundary conditions for the incompressible Navier-Stokes equations where only averaged values are prescribed on measurable portions of the boundary. In particular we consider the case where the flow rate is imposed on several domain sections. This methodology has an interesting application in the numerical simulation of flow in blood vessels, when only a reduced set of boundary data are generally available for the upstream and downstream sections.
引用
收藏
页码:376 / 401
页数:26
相关论文
共 22 条
[1]  
Begue C., 1988, NONLINEAR PARTIAL DI, VIX, P179
[2]  
Brezzi F., 1991, SPRINGER SER COMPUT, V15
[3]   Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations [J].
Bruneau, CH .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02) :303-314
[4]   EFFECTIVE DOWNSTREAM BOUNDARY-CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BRUNEAU, CH ;
FABRIE, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 19 (08) :693-705
[5]   NAVIER-STOKES EQUATIONS WITH IMPOSED PRESSURE AND VELOCITY FLUXES [J].
CONCA, C ;
PARES, C ;
PIRONNEAU, O ;
THIRIET, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (04) :267-287
[6]  
Formaggia L., 1999, Computing and Visualization in Science, V2, P75, DOI 10.1007/s007910050030
[7]   On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels [J].
Formaggia, L ;
Gerbeau, JF ;
Nobile, F ;
Quarteroni, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (6-7) :561-582
[8]  
GIRAULT V, 1986, SPRINGER SER COMPUT, V5
[9]  
Heywood JG, 1996, INT J NUMER METH FL, V22, P325, DOI 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO
[10]  
2-Y