Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression

被引:28
作者
Bertuccio, Claudia A. [1 ]
Chapin, Hannah C. [1 ]
Cai, Yiqiang [2 ]
Mistry, Kavita [1 ]
Chauvet, Veronique [1 ]
Somlo, Stefan [2 ]
Caplan, Michael J. [1 ]
机构
[1] Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Internal Med, New Haven, CT 06520 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PROTEIN-KINASE-C; KIDNEY-DISEASE; GENE-PRODUCT; NUCLEAR TRANSLOCATION; TRANSCRIPTION FACTOR; CALCIUM-RELEASE; CATION CHANNEL; PKD1; ACTIVATION; CELLS;
D O I
10.1074/jbc.M109.017756
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C- terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway.
引用
收藏
页码:21011 / 21026
页数:16
相关论文
共 42 条
[1]   Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2 [J].
Anyatonwu, Georgia I. ;
Estrada, Manuel ;
Tian, Xin ;
Somlo, Stefan ;
Ehrlich, Barbara E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (15) :6454-6459
[2]  
Arnould T, 1999, MOL CELL BIOL, V19, P3423
[3]   The polycystic kidney disease 1 gene product mediates protein kinase C α-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1 [J].
Arnould, T ;
Kim, E ;
Tsiokas, L ;
Jochimsen, F ;
Grüning, W ;
Chang, JD ;
Walz, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (11) :6013-6018
[4]   Regulation of ATP-induced calcium release in COS-7 cells by calcineurin [J].
Bandyopadhyay, A ;
Shin, DW ;
Kim, DH .
BIOCHEMICAL JOURNAL, 2000, 348 (pt 1) :173-181
[5]   The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway [J].
Barr, MM ;
DeModena, J ;
Braun, D ;
Nguyen, CQ ;
Hall, DH ;
Sternberg, PW .
CURRENT BIOLOGY, 2001, 11 (17) :1341-1346
[6]   PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2 [J].
Bhunia, AK ;
Piontek, K ;
Boletta, A ;
Liu, LJ ;
Qian, F ;
Xu, PN ;
Germino, FJ ;
Germino, GG .
CELL, 2002, 109 (02) :157-168
[7]   Role of polycystins in renal tubulogenesis [J].
Boletta, A ;
Germino, GG .
TRENDS IN CELL BIOLOGY, 2003, 13 (09) :484-492
[8]   Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells [J].
Boletta, A ;
Qian, F ;
Onuchic, LF ;
Bhunia, AK ;
Phakdeekitcharoen, B ;
Hanaoka, K ;
Guggino, W ;
Monaco, L ;
Germino, GG .
MOLECULAR CELL, 2000, 6 (05) :1267-1273
[9]   ANALYSIS OF THE GENOMIC SEQUENCE FOR THE AUTOSOMAL-DOMINANT POLYCYSTIC KIDNEY-DISEASE (PKD1) GENE PREDICTS THE PRESENCE OF A LEUCINE-RICH REPEAT [J].
BURN, TC ;
CONNORS, TD ;
DACKOWSKI, WR ;
PETRY, LR ;
VANRAAY, TJ ;
MILLHOLLAND, JM ;
VENET, M ;
MILLER, G ;
HAKIM, RM ;
LANDES, GM ;
KLINGER, KW ;
FENG, Q ;
ONUCHIC, LF ;
WATNICK, T ;
GERMINO, GG ;
DOGGETT, NA .
HUMAN MOLECULAR GENETICS, 1995, 4 (04) :575-582
[10]   Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812 [J].
Cai, YQ ;
Anyatonwu, G ;
Okuhara, D ;
Lee, KB ;
Yu, ZH ;
Onoe, T ;
Mei, CL ;
Qian, Q ;
Geng, L ;
Wiztgall, R ;
Ehrlich, BE ;
Somlo, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :19987-19995