A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi

被引:40
作者
Halstead, JR
Vercoe, PE
Gilbert, HJ [1 ]
Davidson, K
Hazlewood, GP
机构
[1] Newcastle Univ, Dept Biol & Nutr Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Babraham Inst, Lab Mol Enzymol, Cambridge CB2 4AT, England
[3] Univ Western Australia, Dept Anim Sci, Nedlands, WA 6009, Australia
来源
MICROBIOLOGY-SGM | 1999年 / 145卷
关键词
mannanase; Clostridium thermocellum; cellulosome; family; 26;
D O I
10.1099/00221287-145-11-3101
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Cellulosomes prepared by the cellulose affinity digestion method from Clostridium thermocellum culture supernatant hydrolyses carob galactomannan during incubation at 60 degrees and pH 6.5. A recombinant phage expressing mannase activity was isolated from a library of C. thermocellum genomic DNA constructed in lambda ZAPII. The cloned fragment of DNA containing a putative mannanse gene (manA) was sequenced, revealing an ORF of 1767 nt, encoding in protein (mannanase A; Man26A) of 589 aa with a molecular mass of 66816 Da. The putative catalytic domain (CD) of Man26A, identified by gene sectioning and sequence comparisons, displayed up to 32% identity with other mannanases belonging to family 26. Immediately downstream of the CD and separated from it by a short proline/threonine linker was a duplicated 24-residue dockerin motif, which is conserved in all C. thermocellum cellulosomal enzymes described thus far and mediates their attachment to the cellulosome-integrating protein (CipA). Man26A consisting of the CD alone (Man26A') was hyperexpressed in Escherichia coli BL21(DSS) and purified. The truncated enzyme hydrolysed soluble and insoluble mannan, displaying a temperature optimum of 65 degrees C and a pH optimum of 6.5, but exhibited no activity against other plant cell wall polysaccharides. Antiserum raised against Man26A' crossreacted with a polypeptide with a molecular mass of 70 000 Da that is part of the C. thermocellum cellulosome. A second variant of Man26A containing the N-terminal segment of 130 residues and the CD (Man26A'') bound to ivory-nut mannan and weakly to soluble Carob galactomannan and insoluble cellulose. Man26A' consisting of the CD alone did not bind to these polysaccharides. These results indicate that the N-terminal 130 residues of mature Man26A may constitute a weak mannan-binding domain. Sequence comparisons revealed a lack of identity between this region of Man26A and other polysaccharide-binding domains, but significant identity with a region conserved in the three family 26 mannanases from the anaerobic fungus Piromyces equi.
引用
收藏
页码:3101 / 3108
页数:8
相关论文
共 32 条
[1]   THE CELLULOSOME - A TREASURE-TROVE FOR BIOTECHNOLOGY [J].
BAYER, EA ;
MORAG, E ;
LAMED, R .
TRENDS IN BIOTECHNOLOGY, 1994, 12 (09) :379-386
[2]   Cellulosomes - Structure and ultrastructure [J].
Bayer, EA ;
Shimon, LJW ;
Shoham, Y ;
Lamed, R .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 124 (2-3) :221-234
[3]   XYLANASE-B FROM NEOCALLIMASTIX PATRICIARUM CONTAINS A NONCATALYTIC 455-RESIDUE LINKER SEQUENCE COMPRISED OF 57 REPEATS OF AN OCTAPEPTIDE [J].
BLACK, GW ;
HAZLEWOOD, GP ;
XUE, GP ;
ORPIN, CG ;
GILBERT, HJ .
BIOCHEMICAL JOURNAL, 1994, 299 :381-387
[4]   Mannanase A from Pseudomonas fluorescens ssp cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues [J].
Bolam, DN ;
Hughes, N ;
Virden, R ;
Lakey, JH ;
Hazlewood, GP ;
Henrissat, B ;
Braithwaite, KL ;
Gilbert, HJ .
BIOCHEMISTRY, 1996, 35 (50) :16195-16204
[5]  
CLARKE JH, 1991, FEMS MICROBIOL LETT, V83, P305, DOI [10.1111/j.1574-6968.1991.tb04481.x, 10.1016/0378-1097(91)90493-T]
[6]  
COUTINHO JB, 1993, FEMS MICROBIOL LETT, V113, P211, DOI 10.1016/0378-1097(93)90271-3
[7]   SPATIAL SEPARATION OF PROTEIN DOMAINS IS NOT NECESSARY FOR CATALYTIC ACTIVITY OR SUBSTRATE BINDING IN A XYLANASE [J].
FERREIRA, LMA ;
DURRANT, AJ ;
HALL, J ;
HAZLEWOOD, GP ;
GILBERT, HJ .
BIOCHEMICAL JOURNAL, 1990, 269 (01) :261-264
[8]   EVIDENCE FOR A GENERAL ROLE FOR NONCATALYTIC THERMOSTABILIZING DOMAINS IN XYLANASES FROM THERMOPHILIC BACTERIA [J].
FONTES, CMGA ;
HAZLEWOOD, GP ;
MORAG, E ;
HALL, J ;
HIRST, BH ;
GILBERT, HJ .
BIOCHEMICAL JOURNAL, 1995, 307 :151-158
[9]   CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose [J].
Gal, L ;
Gaudin, C ;
Belaich, A ;
Pages, S ;
Tardif, C ;
Belaich, JP .
JOURNAL OF BACTERIOLOGY, 1997, 179 (21) :6595-6601
[10]   THE N-TERMINAL REGION OF AN ENDOGLUCANASE FROM PSEUDOMONAS-FLUORESCENS SUBSPECIES CELLULOSA CONSTITUTES A CELLULOSE-BINDING DOMAIN THAT IS DISTINCT FROM THE CATALYTIC CENTER [J].
GILBERT, HJ ;
HALL, J ;
HAZLEWOOD, GP ;
FERREIRA, LMA .
MOLECULAR MICROBIOLOGY, 1990, 4 (05) :759-767