The inverse mean curvature flow and the Riemannian Penrose Inequality

被引:566
作者
Huisken, G [1 ]
Ilmanen, T
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
[2] ETH Zentrum, CH-8092 Zurich, Switzerland
关键词
D O I
10.4310/jdg/1090349447
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
sLet M be an asymptotically flat 3-manifold of nonnegative scalar curvature. The Riemannian Penrose Inequality states that the area of an outermost minimal surface N in M is bounded by the ADM mass m according to the formula \N\ less than or equal to 16pim(2). We develop a theory of weak solutions of the inverse mean curvature flow, and employ it to prove this inequality for each connected component of N using Geroch's monotonicity formula for the ADM mass. Our method also proves positivity of Bartnik's gravitational capacity by computing a positive lower bound for the mass purely in terms of local geometry.
引用
收藏
页码:353 / 437
页数:85
相关论文
共 91 条
[1]   COORDINATE INVARIANCE AND ENERGY EXPRESSIONS IN GENERAL RELATIVITY [J].
ARNOWITT, R ;
MISNER, CW ;
DESER, S .
PHYSICAL REVIEW, 1961, 122 (03) :997-&
[2]   FROM I(O) TO THE 3 + 1 DESCRIPTION OF SPATIAL INFINITY [J].
ASHTEKAR, A ;
MAGNON, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (09) :2682-2690
[3]   NEW DEFINITION OF QUASILOCAL MASS [J].
BARTNIK, R .
PHYSICAL REVIEW LETTERS, 1989, 62 (20) :2346-2348
[4]  
BARTNIK R, 1993, J DIFFER GEOM, V37, P31
[5]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[6]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[7]  
BARTNIK R, 1997, ENERGY GEN RELATIVIT, P5
[8]  
Bray HL, 2001, J DIFFER GEOM, V59, P177
[9]   SMOOTHNESS OF SOLUTIONS TO NONLINEAR VARIATIONAL INEQUALITIES [J].
BREZIS, H ;
KINDERLE.D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (09) :831-844
[10]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749