Object localisation using the Generative Template of Features

被引:8
作者
Allan, Moray [1 ]
Williams, Christopher K. I. [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH1 2QL, Midlothian, Scotland
关键词
Object recognition; Object localisation; Generative Template of Features; Visual words; IMAGES;
D O I
10.1016/j.cviu.2009.02.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the Generative Template of Features (GTF), a parts-based model for visual object category detection. The GTF consists of a number of parts, and for each part there is a Corresponding spatial location distribution and a distribution over 'visual words' (clusters of invariant features). The performance of the GTF is evaluated for object localisation, and it is shown that such a relatively simple model can give state-of-the-art performance. We also demonstrate how a Hough-transform-like method for object localisation can be derived from the GTF model. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:824 / 838
页数:15
相关论文
共 33 条
[1]   Learning to detect objects in images via a sparse, part-based representation [J].
Agarwal, S ;
Awan, A ;
Roth, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (11) :1475-1490
[2]  
ALLAN M, 2007, THESIS U EDINBURGH
[3]  
[Anonymous], 2004, P WORKSH STAT LEARN
[4]  
[Anonymous], P IEEE INT C COMP VI
[5]   GENERALIZING THE HOUGH TRANSFORM TO DETECT ARBITRARY SHAPES [J].
BALLARD, DH .
PATTERN RECOGNITION, 1981, 13 (02) :111-122
[6]  
BURL M, 1998, P 5 EUR C COMP VIS 9, V2, P628
[7]  
Crandall D, 2005, PROC CVPR IEEE, P10
[8]  
EVEFINGHAIN M, 2005, SEL P 1 PASCAL CHALL
[9]  
Fergus R, 2005, IEEE I CONF COMP VIS, P1816
[10]  
Fergus R, 2005, PROC CVPR IEEE, P380