Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B

被引:191
作者
Eom, Hyun-Jeong [1 ]
Choi, Jinhee [1 ]
机构
[1] Univ Seoul, Fac Environm Engn, Coll Urban Sci, Seoul 130743, South Korea
关键词
CeO2; nanoparticles; Oxidative stress; p38 MAP kinases; Nrf-2; HO-1; CERIUM OXIDE NANOPARTICLES; NF-KAPPA-B; IN-VITRO; HEME OXYGENASE-1; GENE-EXPRESSION; INDUCED DNA; NRF2; TOXICITY; CYTOTOXICITY; ANTIOXIDANT;
D O I
10.1016/j.toxlet.2009.01.028
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
To understand the molecular mechanism of previously observed cerium oxide (CeO2) nanoparticles-induced oxidative stress, an in vitro toxicity assay was conducted using human bronchial epithelial cell, Beas-2B, focusing on the involvement of the oxidative stress responding signal transduction pathway and transcription factors in the toxicity of CeO2 nanoparticles. Extracellular signal-regulating kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) signaling pathways, along with nuclear factor-kappaB (NF-kappa B) and nuclear factor-E2-related factor-2 (Nrf-2), were investigated as the upstream events of oxidative stress from exposure to CeO2 nanoparticles. The overall results suggest that CeO2 nanoparticles may exert their toxicity through oxidative stress, as they cause significant increases in the cellular reactive oxygen species (ROS) concentrations, subsequently leading to the strong induction of heme oxygenase-1 (HO-1) via the p38-Nrf-2 signaling pathway. Further studies on the mechanism by which CeO2 nanoparticles induce the p38-Nrf-2 signaling pathway are warranted for a better understanding of the CeO2 nano particles-induced oxidative stress; studies with other signaling pathways, with concentration-response and time course experiments would also be justified. (C) 2009 Published by Elsevier Ireland Ltd.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 47 条
[1]   In vitro cytotoxicity of nanoparticles in mammalian germline stem cells [J].
Braydich-Stolle, L ;
Hussain, S ;
Schlager, JJ ;
Hofmann, MC .
TOXICOLOGICAL SCIENCES, 2005, 88 (02) :412-419
[2]   Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and NOS expression in chronic experimental colitis [J].
Camacho-Barquero, Laura ;
Villegas, Isabel ;
Sanchez-Calvo, Juan Manuel ;
Talero, Elena ;
Sanchez-Fidalgo, Susana ;
Motilva, Virginia ;
de la Lastra, Catalina Alarcon .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2007, 7 (03) :333-342
[3]   Nrf2 is essential for protection against acute pulmonary injury in mice [J].
Chan, KM ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12731-12736
[4]   An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen [J].
Chan, KM ;
Han, XD ;
Kan, YW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4611-4616
[5]   Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells [J].
Chen, CY ;
Jang, JH ;
Li, MH ;
Surh, YJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 331 (04) :993-1000
[6]   Hierarchically mesostructured doped CeO2 with potential for solar-cell use [J].
Corma, A ;
Atienzar, P ;
García, H ;
Chane-Ching, JY .
NATURE MATERIALS, 2004, 3 (06) :394-397
[7]   The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+, and Cr6+ [J].
Elbekai, RH ;
El-Kadi, AOS .
FREE RADICAL BIOLOGY AND MEDICINE, 2005, 39 (11) :1499-1511
[8]   Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration [J].
Foster, Kelley A. ;
Galeffi, Francesca ;
Gerich, Florian J. ;
Turner, Dennis A. ;
Mueller, Michael .
PROGRESS IN NEUROBIOLOGY, 2006, 79 (03) :136-171
[9]   Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line [J].
Fotakis, G ;
Cemeli, E ;
Anderson, D ;
Timbrell, JA .
TOXICOLOGY IN VITRO, 2005, 19 (04) :481-489
[10]   Semiconductor quantum dots and free radical induced DNA nicking [J].
Green, M ;
Howman, E .
CHEMICAL COMMUNICATIONS, 2005, (01) :121-123