Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase

被引:184
作者
Sanz, P
Alms, GR
Haystead, TAJ
Carlson, M
机构
[1] Columbia Univ, Dept Genet, New York, NY 10032 USA
[2] Columbia Univ, Dept Dev & Microbiol, New York, NY 10032 USA
[3] CSIC, Inst Biomed Valencia, E-46010 Valencia, Spain
[4] Univ Virginia, Dept Pharmacol, Charlottesville, VA 22908 USA
关键词
D O I
10.1128/MCB.20.4.1321-1328.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein phosphatase 1, comprising the regulatory subunit Reg1 and the catalytic subunit Glc7, has a role in glucose repression in Saccharomyces cerevisiae. Previous studies showed that Reg1 regulates the Snf1 protein kinase in response to glucose. Here, we explore the functional relationships between Reg1, Glc7, and Snf1. We show that different sequences of Reg1 interact with Glc7 and Snf1. We use a mutant Reg1 altered in the Glc7-binding motif to demonstrate that Reg1 facilitates the return of the activated Snf1 kinase complex to the autoinhibited state by targeting Glc7 to the complex. Genetic evidence indicated that the catalytic activity of Snf1 negatively regulates its interaction with Reg1. We show that Reg1 is phosphorylated in response to glucose limitation and that this phosphorylation requires Snf1; moreover, Reg1 is dephosphorylated by Glc7 when glucose is added. Finally, we show that hexokinase PII. (Hxk2) has a role in regulating the phosphorylation state of Reg1, which may account for the effect of Hxk2 on Snf1 function. These findings suggest that the phosphorylation of Reg1 by Snf1 is required for the release of Reg1-Glc7 from the kinase complex and also stimulates the activity of Glc7 in promoting closure of the complex.
引用
收藏
页码:1321 / 1328
页数:8
相关论文
共 58 条
[1]   Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae:: characterizing the effects of a phosphatase subunit on the yeast proteome [J].
Alms, GR ;
Sanz, P ;
Carlson, M ;
Haystead, TAJ .
EMBO JOURNAL, 1999, 18 (15) :4157-4168
[2]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[3]   THE YDP PLASMIDS - A UNIFORM SET OF VECTORS BEARING VERSATILE GENE DISRUPTION CASSETTES FOR SACCHAROMYCES-CEREVISIAE [J].
BERBEN, G ;
DUMONT, J ;
GILLIQUET, V ;
BOLLE, PA ;
HILGER, F .
YEAST, 1991, 7 (05) :475-477
[4]  
CANNON JF, 1994, GENETICS, V136, P485
[5]   Glucose repression in yeast [J].
Carlson, M .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (02) :202-207
[6]   MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE SNF1 PROTEIN-KINASE AND EVIDENCE FOR FUNCTIONAL INTERACTION WITH THE SNF4 PROTEIN [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5034-5044
[7]   SIMILAR SUBSTRATE RECOGNITION MOTIFS FOR MAMMALIAN AMP-ACTIVATED PROTEIN-KINASE, HIGHER-PLANT HMG-COA REDUCTASE KINASE-A, YEAST SNF1, AND MAMMALIAN CALMODULIN-DEPENDENT PROTEIN-KINASE-I [J].
DALE, S ;
WILSON, WA ;
EDELMAN, AM ;
HARDIE, DG .
FEBS LETTERS, 1995, 361 (2-3) :191-195
[8]  
Dombek KM, 1999, MOL CELL BIOL, V19, P6029
[9]   Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1 [J].
Egloff, MP ;
Johnson, DF ;
Moorhead, G ;
Cohen, PTW ;
Cohen, P ;
Barford, D .
EMBO JOURNAL, 1997, 16 (08) :1876-1887
[10]  
ENTIAN KD, 1982, J BIOL CHEM, V257, P870