Spatial particle condensation for an exclusion process on a ring

被引:65
作者
Rajewsky, N
Sasamoto, T
Speer, ER
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[2] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10021 USA
[3] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0378-4371(99)00537-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the stationary state of a simple exclusion process on a ring which was recently introduced by Arndt et al. (J. Phys. A 31 (1998) L45; J. Stat. Phys. 97 (1999) 1). This model exhibits spatial condensation of particles. It has been argued (J. Phys. A 31 (1998) L45; condmat/9809123) that the model has a phase transition from a "mixed phase" to a "disordered phase". However, in this paper exact calculations are presented which, we believe, show that in the framework of a grand canonical ensemble there is no such phase transition. An analysis of the fluctuations in the particle density strongly suggests that the same result also holds for the canonical ensemble and suggests the existence of extremely long (but finite) correlation lengths (for example 10(70) sites) in the infinite system at moderate parameter values in the mixed regime. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 33 条
[1]  
AHKIM V, 1983, J PHYS A, V16, pL213
[2]   CONVOLUTIONS OF ORTHONORMAL POLYNOMIALS [J].
ALSALAM, WA ;
CHIHARA, TS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (01) :16-28
[3]  
ARDNT PF, 1998, J PHYS A, V31, pL45
[4]   Spontaneous breaking of translational invariance and spatial condensation in stationary states on a ring. I. The neutral system [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF STATISTICAL PHYSICS, 1999, 97 (1-2) :1-65
[5]  
ASKEY R, 1985, MEM AM MATH SOC, V54, P1
[6]  
ASKEY R, 1984, MEM AM MATH SOC, V300
[7]  
BLYTHE RA, CONDMAT9910242
[8]  
BUNDSCHUH R, CONDMAT9911386
[9]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[10]   EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES [J].
DERRIDA, B ;
JANOWSKY, SA ;
LEBOWITZ, JL ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) :813-842