Accumulation of glucosylceramides in multidrug-resistant cancer cells

被引:307
作者
Lavie, Y
Cao, HT
Bursten, SL
Giuliano, AE
Cabot, MC
机构
[1] ST JOHNS HOSP,JOHN WAYNE CANC INST,SANTA MONICA,CA 90404
[2] CTR HLTH,SANTA MONICA,CA 90404
关键词
D O I
10.1074/jbc.271.32.19530
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multidrug-resistant (MDR) tumors and cancer cell lines demonstrate a wide variety of biochemical changes. In this study we used drug-sensitive wild-type (wt) cancer cell lines and respective MDR subclones, and we demonstrate the accumulation of distinct lipids in MDR cells. These lipids were either absent or present at very low levels in drug-sensitive cells. The compounds, termed lipid-1 and lipid-2, migrated on thin-layer chromatography as a doublet. They could be radiolabeled by incubating MCF-7-AdrR (Adriamycin-resistant) breast cancer cells with [H-3]serine, [H-3]palmitic acid, or [H-3]galactose. Utilization of these precursors by MCF-7-wt cells for synthesis of lipid-1 and -2 was minimal. Two inhibitors of sphingolipid biosynthesis, L-cycloserine and fumonisin B-1, prevented the observed accumulation of the lipid compounds. An inhibitor of glucosylceramide synthesis, 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, completely abolished the formation of lipid-1 and -2 in MCF-7-AdrR cells and, to a lesser extent, inhibited the formation of lactosylceramides and gangliosides. Utilizing mass spectrometry, the multidrug resistance-associated lipids were further characterized as monoglycosylceramides of two major species that contained either 16-carbon (palmitic) or 24-carbon (lignoceric and nervonic) fatty acids. The carbohydrate head group of glycosylceramides was identified as glucose, not galactose, thus designating the accumulated lipids as glucosylceramides. Incorporation of [H-3]palmitic acid into glucosylceramide was strikingly higher (8-10 times) in MCF-7-AdrR cells compared with MCF-7-wt cells. Since the rate of glucosylceramide degradation in MCF-7-AdrR cells was not attenuated, accelerated glycosphingolipid synthesis in MDR cells is suggested. Glucosylceramide also accumulated in KBV-1, a vinblastine-resistant epidermoid carcinoma but not in KB-3-1, drug-sensitive wt cells. MDR ovarian adenocarcinoma cells (NIH:OVCAR-3) also contained elevated levels of glucosylceramide. Our results demonstrate a correlation between cellular drug resistance and alterations in glucosylceramide metabolism.
引用
收藏
页码:19530 / 19536
页数:7
相关论文
共 45 条
[1]   IMPROVED INHIBITORS OF GLUCOSYLCERAMIDE SYNTHASE [J].
ABE, A ;
INOKUCHI, J ;
JIMBO, M ;
SHIMENO, H ;
NAGAMATSU, A ;
SHAYMAN, JA ;
SHUKLA, GS ;
RADIN, NS .
JOURNAL OF BIOCHEMISTRY, 1992, 111 (02) :191-196
[2]   REGULATION OF ION CHANNELS BY ABC TRANSPORTERS THAT SECRETE ATP [J].
ALAWQATI, Q .
SCIENCE, 1995, 269 (5225) :805-806
[3]  
BIEDLER JL, 1983, CANCER TREAT REP, V67, P859
[4]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[5]   CERAMIDE SYNTHASE MEDIATES DAUNORUBICIN-INDUCED APOPTOSIS - AN ALTERNATIVE MECHANISM FOR GENERATING DEATH SIGNALS [J].
BOSE, R ;
VERHEIJ, M ;
HAIMOVITZFRIEDMAN, A ;
SCOTTO, K ;
FUKS, Z ;
KOLESNICK, R .
CELL, 1995, 82 (03) :405-414
[6]   P-GLYCOPROTEIN, MULTIDRUG-RESISTANCE AND TUMOR PROGRESSION [J].
BRADLEY, G ;
LING, V .
CANCER AND METASTASIS REVIEWS, 1994, 13 (02) :223-233
[7]   MECHANISM OF MULTIDRUG RESISTANCE [J].
BRADLEY, G ;
JURANKA, PF ;
LING, V .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 948 (01) :87-128
[8]   LOCALIZATION OF THE GANGLIOSIDES GD2 AND GD3 IN ADHESION PLAQUES AND ON THE SURFACE OF HUMAN-MELANOMA CELLS [J].
CHERESH, DA ;
HARPER, JR ;
SCHULZ, G ;
REISFELD, RA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (18) :5767-5771
[9]   MODULATION OF ACTIVITY OF THE PROMOTER OF THE HUMAN MDR1 GENE BY RAS AND P53 [J].
CHIN, KV ;
UEDA, K ;
PASTAN, I ;
GOTTESMAN, MM .
SCIENCE, 1992, 255 (5043) :459-462
[10]   OVEREXPRESSION OF A TRANSPORTER GENE IN A MULTIDRUG-RESISTANT HUMAN LUNG-CANCER CELL-LINE [J].
COLE, SPC ;
BHARDWAJ, G ;
GERLACH, JH ;
MACKIE, JE ;
GRANT, CE ;
ALMQUIST, KC ;
STEWART, AJ ;
KURZ, EU ;
DUNCAN, AMV ;
DEELEY, RG .
SCIENCE, 1992, 258 (5088) :1650-1654