Analysis of contact interactions between a rough deformable colloid and a smooth substrate

被引:108
作者
Cooper, K
Ohler, N
Gupta, A
Beaudoin, S
机构
[1] Arizona State Univ, Dept Chem Bio & Mat Engn, Tempe, AZ 85287 USA
[2] Speedfam IPEC Corp, Chandler, AZ 85226 USA
关键词
morphology; van der Waals interactions; deformation; adhesion force; polystyrene spheres;
D O I
10.1006/jcis.1999.6561
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A model was developed for the effect of van der Waals interactions between a rough, deformable, spherical colloid and a flat, smooth, hard surface in contact. The model demonstrates the significant effect of colloid roughness on removal force. Small changes in colloid roughness produce large changes in the predicted removal force. Several authors attribute discrepancies in the observed interaction force between particles and surfaces to colloid roughness, and our model supports their hypotheses, Experimental data documenting the force required to remove colloids of polystyrene latex from silica substrates in aqueous solution were collected during AFM studies of this system. When colloid roughness exists, as is the case in this work, our model bounds the observed removal force. The predicted range of removal forces is in better quantitative agreement with our removal force data than are forces predicted by classical DLVO theory, (C) 2000 Academic Press.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 51 条
[1]   Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water: From force laws and physical properties [J].
Ackler, HD ;
French, RH ;
Chiang, YM .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (02) :460-469
[2]   DLVO interaction between rough surfaces [J].
Bhattacharjee, S ;
Ko, CH ;
Elimelech, M .
LANGMUIR, 1998, 14 (12) :3365-3375
[3]   NANOTRIBOLOGY - FRICTION, WEAR AND LUBRICATION AT THE ATOMIC-SCALE [J].
BHUSHAN, B ;
ISRAELACHVILI, JN ;
LANDMAN, U .
NATURE, 1995, 374 (6523) :607-616
[4]   Atomic force microscopy investigation of the adhesion between a single polymer sphere and a flat surface [J].
Biggs, S ;
Spinks, G .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 1998, 12 (05) :461-478
[5]   AN ANALYSIS OF PARTICLE ADHESION ON SEMICONDUCTOR SURFACES [J].
BOWLING, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (09) :2208-2214
[6]   The cohesion between smoke particles. [J].
Bradley, RS .
TRANSACTIONS OF THE FARADAY SOCIETY, 1936, 32 (02) :1088-1090
[7]  
Bradley RS, 1932, PHILOS MAG, V13, P853
[8]   MEASURING LOCAL SURFACE-CHARGE DENSITIES IN ELECTROLYTE-SOLUTIONS WITH A SCANNING FORCE MICROSCOPE [J].
BUTT, HJ .
BIOPHYSICAL JOURNAL, 1992, 63 (02) :578-582
[9]   MEASURING ELECTROSTATIC, VANDERWAALS, AND HYDRATION FORCES IN ELECTROLYTE-SOLUTIONS WITH AN ATOMIC FORCE MICROSCOPE [J].
BUTT, HJ .
BIOPHYSICAL JOURNAL, 1991, 60 (06) :1438-1444
[10]   A NONDESTRUCTIVE METHOD FOR DETERMINING THE SPRING CONSTANT OF CANTILEVERS FOR SCANNING FORCE MICROSCOPY [J].
CLEVELAND, JP ;
MANNE, S ;
BOCEK, D ;
HANSMA, PK .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (02) :403-405