Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo

被引:86
作者
West, AR
Grace, AA
机构
[1] Univ Pittsburgh, Ctr Neurosci, Dept Neurosci, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Ctr Neurosci, Dept Psychiat, Pittsburgh, PA 15260 USA
关键词
D O I
10.1152/jn.2000.83.4.1796
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A major component of the cortical regulation of the nigrostriatal dopamine (DA) system is known to occur via activation of striatal efferent systems projecting to the substantia nigra. The potential intermediary role of striatal nitric oxide synthase (NOS)-containing interneurons in modulating the efferent regulation of DA neuron activity was examined using single-unit recordings of DA neurons performed concurrently with striatal microdialysis in anesthetized rats. The response of DA neurons recorded in the substantia nigra to intrastriatal artificial cerebrospinal fluid (ACSF) or drug infusion was examined in terms of mean firing rate, percent of spikes fired in bursts, cells/track, and response to electrical stimulation of the orbital prefrontal cortex (oPFC) and striatum. Intrastriatal infusion of NOS substrate concurrently with intermittent periods of striatal and cortical stimulation increased the mean DA cell population firing rate as compared with ACSF controls. This effect was reproduced via intrastriatal infusion of a NO generator. Infusion of either a NOS inhibitor or NO chelator via reverse microdialysis did not affect basal firing rate but increased the percentage of DA neurons responding to striatal stimulation with an initial inhibition followed by a rebound excitation (IE response) from 40 to 74%. NO scavenger infusion also markedly decreased the stimulation intensity required to elicit an IE response to electrical stimulation of the striatum. In single neurons in which the effects of electrical stimulation were observed before and after drug delivery, NO antagonist infusion was observed to decrease the onset latency and extend the duration of the initial inhibitory phase induced by either oPFC or striatal stimulation. This is the first report showing that striatal NO tone regulates the basal activity and responsiveness of DA neurons to cortical and striatal inputs. These studies also indicate that striatal NO signaling may play an important role in the integration of information transmitted to basal ganglia output centers via corticostriatal and striatal efferent pathways.
引用
收藏
页码:1796 / 1808
页数:13
相关论文
共 37 条
[1]   DISTRIBUTION OF COMPONENTS OF THE GUANOSINE 3',5'-PHOSPHATE SYSTEM IN RAT CAUDATE PUTAMEN [J].
ARIANO, MA .
NEUROSCIENCE, 1983, 10 (03) :707-723
[2]   THE GABA AND SUBSTANCE-P INPUT TO DOPAMINERGIC-NEURONS IN THE SUBSTANTIA-NIGRA OF THE RAT [J].
BOLAM, JP ;
SMITH, Y .
BRAIN RESEARCH, 1990, 529 (1-2) :57-78
[3]  
BRASZKO JJ, 1981, J PHARMACOL EXP THER, V216, P289
[4]   LOCALIZATION OF NITRIC-OXIDE SYNTHASE INDICATING A NEURAL ROLE FOR NITRIC-OXIDE [J].
BREDT, DS ;
HWANG, PM ;
SNYDER, SH .
NATURE, 1990, 347 (6295) :768-770
[5]   NITRIC-OXIDE SYNTHASE PROTEIN AND MESSENGER-RNA ARE DISCRETELY LOCALIZED IN NEURONAL POPULATIONS OF THE MAMMALIAN CNS TOGETHER WITH NADPH DIAPHORASE [J].
BREDT, DS ;
GLATT, CE ;
HWANG, PM ;
FOTUHI, M ;
DAWSON, TM ;
SNYDER, SH .
NEURON, 1991, 7 (04) :615-624
[6]   ACUTE AND CHRONIC HALOPERIDOL TREATMENT - COMPARISON OF EFFECTS ON NIGRAL DOPAMINERGIC CELL ACTIVITY [J].
BUNNEY, BS ;
GRACE, AA .
LIFE SCIENCES, 1978, 23 (16) :1715-1727
[7]  
Calabresi P, 1999, J NEUROSCI, V19, P2489
[8]   INTERACTIONS BETWEEN GLUTAMATERGIC AND MONOAMINERGIC SYSTEMS WITHIN THE BASAL GANGLIA - IMPLICATIONS FOR SCHIZOPHRENIA AND PARKINSONS-DISEASE [J].
CARLSSON, M ;
CARLSSON, A .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :272-276
[9]  
CHIODO LA, 1983, J NEUROSCI, V3, P1607
[10]   THE INFLUENCE OF STRIATAL STIMULATION AND PUTATIVE NEUROTRANSMITTERS ON IDENTIFIED NEURONS IN THE RAT SUBSTANTIA NIGRA [J].
COLLINGRIDGE, GL ;
DAVIES, J .
BRAIN RESEARCH, 1981, 212 (02) :345-359