Optimization of quantum Monte Carlo wave functions using analytical energy derivatives

被引:63
作者
Lin, X
Zhang, HK [1 ]
Rappe, AM
机构
[1] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[2] Univ Penn, Res Struct Matter Lab, Philadelphia, PA 19104 USA
关键词
D O I
10.1063/1.480839
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An algorithm is proposed to optimize quantum Monte Carlo (QMC) wave functions based on Newton's method and analytical computation of the first and second derivatives of the variational energy. This direct application of the variational principle yields significantly lower energy than variance minimization methods when applied to the same trial wave function. Quadratic convergence to the local minimum of the variational parameters is achieved. A general theorem is presented, which substantially simplifies the analytic expressions of derivatives in the case of wave function optimization. To demonstrate the method, the ground-state energies of the first-row elements are calculated. (C) 2000 American Institute of Physics. [S0021-9606(00)30605-5].
引用
收藏
页码:2650 / 2654
页数:5
相关论文
共 18 条
[1]  
BARLETT JH, 1955, PHYS REV, V98, P1067
[2]   Fixed-sample optimization in quantum Monte Carlo using a probability density function [J].
Barnett, RN ;
Sun, ZW ;
Lester, WA .
CHEMICAL PHYSICS LETTERS, 1997, 273 (5-6) :321-328
[3]   A CALCULATION FOR ENERGIES AND WAVEFUNCTIONS FOR STATES OF NEON WITH FULL ELECTRONIC CORRELATION ACCURACY [J].
BOYS, SF ;
HANDY, NC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 310 (1500) :63-&
[4]   OPTIMIZATION OF QUANTUM MONTE-CARLO WAVE-FUNCTIONS USING ANALYTICAL DERIVATIVES [J].
BUECKERT, H ;
ROTHSTEIN, SM ;
VRBIK, J .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1992, 70 (02) :366-371
[5]  
CEPERLEY DM, 1996, ADV CHEM PHYSICS, V93
[6]  
Clementi E., 1974, Atomic Data and Nuclear Data Tables, V14, P177, DOI 10.1016/S0092-640X(74)80016-1
[7]  
Hammond B. L., 1994, MONTE CARLO METHODS, DOI DOI 10.1142/1170
[8]   A novel method for optimizing quantum Monte Carlo wave functions [J].
Huang, HX ;
Cao, ZX .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (01) :200-205
[9]   A novel quantum Monte Carlo strategy: Surplus function approach [J].
Huang, HX ;
Xie, QJ ;
Cao, ZX ;
Li, ZL ;
Yue, Z ;
Ming, L .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :3703-3707
[10]   OPTIMIZED TRIAL FUNCTIONS FOR QUANTUM MONTE-CARLO [J].
HUANG, SY ;
SUN, ZW ;
LESTER, WA .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :597-602