The monogenic scale-space: A unifying approach to phase-based image processing in scale-space

被引:157
作者
Felsberg, M [1 ]
Sommer, G
机构
[1] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[2] Univ Kiel, Inst Comp Sci & Appl Math, D-24098 Kiel, Germany
关键词
Poisson kernel; scale-space; local phase; analytic signal; Riesz transform; monogenic signal;
D O I
10.1023/B:JMIV.0000026554.79537.35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the topics of scale-space and phase-based image processing in a unifying framework. In contrast to the common opinion, the Gaussian kernel is not the unique choice for a linear scale-space. Instead, we chose the Poisson kernel since it is closely related to the monogenic signal, a 2D generalization of the analytic signal, where the Riesz transform replaces the Hilbert transform. The Riesz transform itself yields the flux of the Poisson scale-space and the combination of flux and scale-space, the monogenic scale-space, provides the local features phase-vector and attenuation in scale-space. Under certain assumptions, the latter two again form a monogenic scale-space which gives deeper insight to low-level image processing. In particular, we discuss edge detection by a new approach to phase congruency and its relation to amplitude based methods, reconstruction from local amplitude and local phase, and the evaluation of the local frequency.
引用
收藏
页码:5 / 26
页数:22
相关论文
共 52 条
[1]  
[Anonymous], 1982, RES NOTES MATH
[2]  
[Anonymous], COMPUTATIONAL IMAGIN
[3]   UNIQUENESS OF THE GAUSSIAN KERNEL FOR SCALE-SPACE FILTERING [J].
BABAUD, J ;
WITKIN, AP ;
BAUDIN, M ;
DUDA, RO .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (01) :26-33
[4]   IMAGE-RECONSTRUCTION FROM LOCALIZED PHASE [J].
BEHAR, J ;
PORAT, M ;
ZEEVI, YY .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (04) :736-743
[5]  
Bracewell R. N., 1986, FOURIER TRANSFORM IT, V31999
[6]  
Bracewell R. N., 1995, Two-Dimensional Imaging
[7]  
BRONSTEIN IN, 1993, TASCHENBUCH MATH
[8]  
BURG K, 1994, HOHERE MATH INGENIEU, V4
[9]  
BURG K, 1993, HOHERE MATH INGENIEU, V5
[10]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540