Using discriminant eigenfeatures for image retrieval

被引:1043
作者
Swets, DL [1 ]
Weng, JJ [1 ]
机构
[1] MICHIGAN STATE UNIV, DEPT COMP SCI, E LANSING, MI 48824 USA
基金
美国国家科学基金会;
关键词
principal component analysis; discriminant analysis; eigenfeature; image retrieval; feature selection; face recognition; object recognition; content-based image retrieval;
D O I
10.1109/34.531802
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the automatic selection of features from an image training set using the theories of multidimensional discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class retrieval from a large database of widely varying real-world objects presented as ''well-framed'' views, and compare it with that of the principal component analysis.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 22 条
[1]   A VISUAL INFORMATION MANAGEMENT-SYSTEM FOR THE INTERACTIVE RETRIEVAL OF FACES [J].
BACH, JR ;
PAUL, S ;
JAIN, R .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1993, 5 (04) :619-628
[2]  
BEYMER D, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P500, DOI 10.1109/ICCV.1995.466898
[3]  
BREGLER C, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P494, DOI 10.1109/ICCV.1995.466899
[4]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[5]   The statistical utilization of multiple measurements [J].
Fisher, RA .
ANNALS OF EUGENICS, 1938, 8 :376-386
[6]  
FUKUNAGA K, 1990, INTRO STATISTICAL PA
[7]   AUTOMATIC-GENERATION OF OBJECT RECOGNITION PROGRAMS [J].
IKEUCHI, K ;
KANADE, T .
PROCEEDINGS OF THE IEEE, 1988, 76 (08) :1016-1035
[8]  
Jain A.K., 1988, ALGORITHMS CLUSTERIN
[9]  
Jain R., 1994, SIGMOD Record, V23, P27, DOI 10.1145/190627.190638
[10]  
Jolliffe I., 2002, Principal Component Analysis, V2, DOI [10.1007/b98835, DOI 10.1007/B98835, 10.1007/0-387-22440-8_13, DOI 10.1007/0-387-22440-8_13]