Evaluation of non-geometric methods for visual odometry

被引:36
作者
Ciarfuglia, Thomas A. [1 ]
Costante, Gabriele [1 ]
Valigi, Paolo [1 ]
Ricci, Elisa [1 ,2 ]
机构
[1] Univ Perugia, Dept Engn, I-06100 Perugia, Italy
[2] Fdn Bruno Kessler, Povo, Trento, Italy
关键词
Autonomous robots; Visual odometry; Ego-motion estimation; SLAM; SVMs; Gaussian processes; VISION; FUSION; MOTION; ROBUST; FLOW;
D O I
10.1016/j.robot.2014.08.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual Odometry (VO) is one of the fundamental building blocks of modern autonomous robot navigation and mapping. While most state-of-the-art techniques use geometrical methods for camera ego-motion estimation from optical flow vectors, in the last few years learning approaches have been proposed to solve this problem. These approaches are emerging and there is still much to explore. This work follows this track applying Kernel Machines to monocular visual ego-motion estimation. Unlike geometrical methods, learning-based approaches to monocular visual odometry allow issues like scale estimation and camera calibration to be overcome, assuming the availability of training data. While some previous works have proposed learning paradigms to VO, to our knowledge no extensive evaluation of applying kernel-based methods to Visual Odometry has been conducted. To fill this gap, in this work we consider publicly available datasets and perform several experiments in order to set a comparison baseline with traditional techniques. Experimental results show good performances of learning algorithms and set them as a solid alternative to the computationally intensive and complex to implement geometrical techniques. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1717 / 1730
页数:14
相关论文
共 38 条
[1]  
Alcantarilla PF, 2012, IEEE INT CONF ROBOT, P1290, DOI 10.1109/ICRA.2012.6224690
[2]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[3]  
Bordes A, 2005, J MACH LEARN RES, V6, P1579
[4]   Rawseeds ground truth collection systems for indoor self-localization and mapping [J].
Ceriani, Simone ;
Fontana, Giulio ;
Giusti, Alessandro ;
Marzorati, Daniele ;
Matteucci, Matteo ;
Migliore, Davide ;
Rizzi, Davide ;
Sorrenti, Domenico G. ;
Taddei, Pierluigi .
AUTONOMOUS ROBOTS, 2009, 27 (04) :353-371
[5]  
Ciarfuglia TA, 2012, IEEE INT C INT ROBOT, P3837, DOI 10.1109/IROS.2012.6385654
[6]   Inverse Depth Parametrization for Monocular SLAM [J].
Civera, Javier ;
Davison, Andrew J. ;
Montiel, J. M. Martinez .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (05) :932-945
[7]  
Costante G, 2013, IEEE INT C INT ROBOT, P2122, DOI 10.1109/IROS.2013.6696653
[8]  
Davison AJ, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P1403
[9]   MonoSLAM: Real-time single camera SLAM [J].
Davison, Andrew J. ;
Reid, Ian D. ;
Molton, Nicholas D. ;
Stasse, Olivier .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (06) :1052-1067
[10]  
Eade E., 2006, P IEEE C COMP VIS PA, V1, P469, DOI DOI 10.1109/CVPR.2006.263