Redox-driven membrane-bound proton pumps

被引:100
作者
Brzezinski, P [1 ]
机构
[1] Stockholm Univ, Arrhenius Labs Nat Sci, Dept Biochem & Biophys, SE-10691 Stockholm, Sweden
关键词
D O I
10.1016/j.tibs.2004.05.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, remarkable progress has been made in our understanding of the structure and function of membrane-bound proton transporters at the molecular level. Perhaps the most challenging and complex of these molecular machines are the haem-copper oxidases. These enzymes are designed to activate the kinetically stable O-2 molecule, to prevent the release of potentially toxic oxygen intermediates and, at the same time, to harness the free energy from O-2 reduction by pumping protons across the membrane. So far, the mechanism of proton pumping has not been determined in any proton pump driven by reduction-oxidation reactions. Although this remains one of the key problems of molecular bioenergetics, recent developments have brought us to its core and closer to its solution.
引用
收藏
页码:380 / 387
页数:8
相关论文
共 57 条
[1]  
Abramson J, 2000, NAT STRUCT BIOL, V7, P910
[2]   Glutamate 286 in cytochrome aa(3) from Rhodobacter sphaeroides is involved in proton uptake during the reaction of the fully-reduced enzyme with dioxygen [J].
Adelroth, P ;
Ek, MS ;
Mitchell, DM ;
Gennis, RB ;
Brzezinski, P .
BIOCHEMISTRY, 1997, 36 (45) :13824-13829
[3]  
ADELROTH P, BIOCH BIOPHYS ACTA, V1459, P533
[4]   How oxygen is activated and reduced in respiration [J].
Babcock, GT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :12971-12973
[5]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[6]   Redox dependent changes at the heme propionates in cytochrome c oxidase from Paracoccus denitrificans:: Direct evidence from FTIR difference spectroscopy in combination with heme propionate 13C labeling [J].
Behr, J ;
Hellwig, P ;
Mäntele, W ;
Michel, H .
BIOCHEMISTRY, 1998, 37 (20) :7400-7406
[7]   The catalytic cycle of cytochrome c oxidase is not the sum of its two halves [J].
Bloch, D ;
Belevich, I ;
Jasaitis, A ;
Ribacka, C ;
Puustinen, A ;
Verkhovsky, MI ;
Wikström, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (02) :529-533
[8]   O-O bond splitting mechanism in cytochrome oxidase [J].
Blomberg, MRA ;
Siegbahn, PEM ;
Babcock, GT ;
Wikström, M .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2000, 80 (3-4) :261-269
[9]   On the role of the K-proton transfer pathway in cytochrome c oxidase [J].
Brändén, M ;
Sigurdson, H ;
Namslauer, A ;
Gennis, RB ;
Ädelroth, P ;
Brzezinski, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (09) :5013-5018
[10]   Biophysical aspects of intra-protein proton transfer [J].
Brandsburg-Zabary, S ;
Fried, G ;
Marantz, Y ;
Nachliel, E ;
Gutman, M .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1458 (01) :120-134