Maximum certainty data partitioning

被引:51
作者
Roberts, SJ [1 ]
Everson, R [1 ]
Rezek, I [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, Intelligent & Interact Syst Grp, London SW7 2BT, England
关键词
cluster analysis; data partitioning; information theory;
D O I
10.1016/S0031-3203(99)00086-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Problems in data analysis often require the unsupervised partitioning of a dataset into clusters. Many methods exist for such partitioning but most have the weakness of being model-based (most assuming hyper-ellipsoidal clusters) or computationally infeasible in anything more than a three-dimensional data space. We re-consider the notion of cluster analysis in information-theoretic terms and show that minimisation of partition entropy can be used to estimate the number and structure of probable data generators. (C) 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:833 / 839
页数:7
相关论文
共 10 条
[1]   COMPARATIVE-ANALYSIS OF STATISTICAL PATTERN-RECOGNITION METHODS IN HIGH-DIMENSIONAL SETTINGS [J].
AEBERHARD, S ;
COOMANS, D ;
DEVEL, O .
PATTERN RECOGNITION, 1994, 27 (08) :1065-1077
[2]  
Anderson E., 1935, Bulletin of the American IRIS Society, V59, P2
[3]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[4]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[5]   UNSUPERVISED OPTIMAL FUZZY CLUSTERING [J].
GATH, I ;
GEVA, AB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :773-781
[6]  
Jain K, 1988, Algorithms for clustering data
[7]  
Press W. H, 1991, NUMERICAL RECIPES C
[8]   Parametric and non-parametric unsupervised cluster analysis [J].
Roberts, SJ .
PATTERN RECOGNITION, 1997, 30 (02) :261-272
[9]   Bayesian approaches to Gaussian mixture modeling [J].
Roberts, SJ ;
Husmeier, D ;
Rezek, I ;
Penny, W .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (11) :1133-1142
[10]  
Silverman B.W., 1986, DENSITY ESTIMATION S, V26