Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase

被引:2291
作者
Yeung, F
Hoberg, JE
Ramsey, CS
Keller, MD
Jones, DR
Frye, RA
Mayo, MW
机构
[1] Univ Virginia, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA
[2] Univ Virginia, Dept Surg, Charlottesville, VA 22908 USA
[3] VA Med Ctr, Pittsburgh, PA USA
关键词
apoptosis; cIAP-2; gene; RelA/p65; SIRTI; TNF alpha;
D O I
10.1038/sj.emboj.7600244
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NF-kappaB is responsible for upregulating gene products that control cell survival. In this study, we demonstrate that SIRT1, a nicotinamide adenosine dinucleotide-dependent histone deacetylase, regulates the transcriptional activity of NF-kappaB. SIRT1, the mammalian ortholog of the yeast SIR2 (Silencing Information Regulator) and a member of the Sirtuin family, has been implicated in modulating transcriptional silencing and cell survival. SIRTI physically interacts with the RelA/p65 subunit of NF-kappaB and inhibits transcription by deacetylating ReIA/p65 at lysine 310. Treatment of cells with resveratrol, a small-molecule agonist of Sirtuin activity, potentiates chromatin-associated SIRT1 protein on the cIAP-2 promoter region, an effect that correlates with a loss of NF-kappaB-regulated gene expression and sensitization of cells to TNFalpha-induced apoptosis. While SIRTI is capable of protecting cells from p53-induced apoptosis, our work provides evidence that SIRTI activity augments apoptosis in response to TNFa by the ability of the deacetylase to inhibit the transactivation potential of the RelA/p65 protein.
引用
收藏
页码:2369 / 2380
页数:12
相关论文
共 50 条
[1]   The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression [J].
Ashburner, BP ;
Westerheide, SD ;
Baldwin, AS .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :7065-7077
[2]   Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein [J].
Baek, SH ;
Ohgi, KA ;
Rose, DW ;
Koo, EH ;
Glass, CK ;
Rosenfeld, MG .
CELL, 2002, 110 (01) :55-67
[3]   The NF-kappa B and I kappa B proteins: New discoveries and insights [J].
Baldwin, AS .
ANNUAL REVIEW OF IMMUNOLOGY, 1996, 14 :649-683
[4]   Identification of a small molecule inhibitor of Sir2p [J].
Bedalov, A ;
Gatbonton, T ;
Irvine, WP ;
Gottschling, DE ;
Simon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15113-15118
[5]   Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation [J].
Brooks, CL ;
Gu, W .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :164-171
[6]  
BUCK SW, 2004, J LEUKOC BIOL JLB
[7]   Duration of nuclear NF-κB action regulated by reversible acetylation [J].
Chen, LF ;
Fischle, W ;
Verdin, E ;
Greene, WC .
SCIENCE, 2001, 293 (5535) :1653-1657
[8]   Acetylation of ReIA at discrete sites regulates distinct nuclear functions of NF-κB [J].
Chen, LF ;
Mu, YJ ;
Greene, WC .
EMBO JOURNAL, 2002, 21 (23) :6539-6548
[9]   Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice [J].
Cheng, HL ;
Mostoslavsky, R ;
Saito, S ;
Manis, JP ;
Gu, YS ;
Patel, P ;
Bronson, R ;
Appella, E ;
Alt, FW ;
Chua, KF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10794-10799
[10]   Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis [J].
Cohen, HY ;
Lavu, S ;
Bitterman, KJ ;
Hekking, B ;
Imahiyerobo, TA ;
Miller, C ;
Frye, R ;
Ploegh, H ;
Kessler, BM ;
Sinclair, DA .
MOLECULAR CELL, 2004, 13 (05) :627-638