Persephin-overexpressing neural stem cells regulate the function of nigral dopaminergic neurons and prevent their degeneration in a model of Parkinson's disease

被引:53
作者
Åkerud, P [1 ]
Holm, PC [1 ]
Castelo-Branco, G [1 ]
Sousa, K [1 ]
Rodriguez, FJ [1 ]
Arenas, E [1 ]
机构
[1] Karolinska Inst, Dept Med Biochem & Biophys, Mol Neurobiol Lab, S-17177 Stockholm, Sweden
关键词
D O I
10.1006/mvne.2002.1171
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Persephin (PSP) is a neurotrophic factor of the GDNF family that has been found to promote the survival of multiple populations of neurons. In the present study we have examined: (1) the mechanism of action and the function of PSP on nigrostriatal dopamine neurons and (2) the therapeutic potential of PSP, delivered by neural stem cells (NSCs) in a model of Parkinson's disease. Interestingly we found that the prenatal ventral mesencephalon and the newborn striatum express high levels of PsP mRNA. Moreover, midbrain dopamine neurons express its preferred receptor GFRalpha4, allowing a cis type of action of PSP on dopamine neurons. Primary culture studies showed that PSP is as potent and efficacious as GDNF at promoting both survival and neuritogenesis of midbrain dopamine neurons. To study the function and therapeutic potential of PsP in vivo we engineered NSCs to overexpress PSP. PSP-c17.2 cells were found to stably express PSP mRNA and protein for at least 3 months in vivo, to disperse within the striatum, and to give rise to neurons, astrocytes, and a large proportion of oligodendrocytes that integrated within white matter tracts in the striatum. Moreover, PSP-c17.2 cells enhanced dopamine-dependent behavioral parameters in unlesioned mice and prevented the loss of dopamine neurons and the behavioral impairment of mice receiving intrastriatal 6-OHDA injections. Thus, our findings are consistent with a direct action of PSP on developing and adult midbrain dopamine neurons and suggest that the delivery of PSP by NSCs may constitute a very useful strategy in the treatment of Parkinson's disease.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 64 条
[1]   Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease [J].
Åkerud, P ;
Canals, JM ;
Snyder, EY ;
Arenas, E .
JOURNAL OF NEUROSCIENCE, 2001, 21 (20) :8108-8118
[2]   Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons [J].
Åkerud, P ;
Alberch, J ;
Eketjäll, S ;
Wagner, J ;
Arenas, E .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (01) :70-78
[3]   GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo [J].
Arenas, E ;
Trupp, M ;
Akerud, P ;
Ibanez, CF .
NEURON, 1995, 15 (06) :1465-1473
[4]   GFRα3 is an orphan member of the GDNF/neurturin/persephin receptor family [J].
Baloh, RH ;
Gorodinsky, A ;
Golden, JP ;
Tansey, MG ;
Keck, CL ;
Popescu, NC ;
Johnson, EM ;
Milbrandt, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5801-5806
[5]   TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret [J].
Baloh, RH ;
Tansey, MG ;
Golden, JP ;
Creedon, DJ ;
Heuckeroth, RO ;
Keck, CL ;
Zimonjic, DB ;
Popescu, NC ;
Johnson, EM ;
Milbrandt, J .
NEURON, 1997, 18 (05) :793-802
[6]   Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3-RET receptor complex [J].
Baloh, RH ;
Tansey, MG ;
Lampe, PA ;
Fahrner, TJ ;
Enomoto, H ;
Simburger, KS ;
Leitner, ML ;
Araki, T ;
Johnson, EM ;
Milbrandt, J .
NEURON, 1998, 21 (06) :1291-1302
[7]   GDNF induces a dystonia-like state in neonatal rats and stimulates dopamine and serotonin synthesis [J].
Beck, KD ;
Irwin, I ;
Valverde, J ;
Brennan, TJ ;
Langston, JW ;
Hefti, F .
NEURON, 1996, 16 (03) :665-673
[8]   MESENCEPHALIC DOPAMINERGIC-NEURONS PROTECTED BY GDNF FROM AXOTOMY-INDUCED DEGENERATION IN THE ADULT BRAIN [J].
BECK, KD ;
VALVERDE, J ;
ALEXI, T ;
POULSEN, K ;
MOFFAT, B ;
VANDLEN, RA ;
ROSENTHAL, A ;
HEFTI, F .
NATURE, 1995, 373 (6512) :339-341
[9]   GDNF enhances the synaptic efficacy of dopaminergic neurons in culture [J].
Bourque, MJ ;
Trudeau, LE .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (09) :3172-3180
[10]   GLIAL-CELL LINE-DERIVED NEUROTROPHIC FACTOR SUPPORTS SURVIVAL OF INJURED MIDBRAIN DOPAMINERGIC-NEURONS [J].
BOWENKAMP, KE ;
HOFFMAN, AF ;
GERHARDT, GA ;
HENRY, MA ;
BIDDLE, PT ;
HOFFER, BJ ;
GRANHOLM, ACE .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 355 (04) :479-489