Visualizing tubular lipid peroxidation in intact renal tissue in hypertensive rats

被引:24
作者
Bapat, S
Post, JA
Braam, B
Goldschmeding, R
Koomans, HA
Verkleij, AJ
Joles, JA
机构
[1] Univ Utrecht, Dept Mol Cell Biol, Biomembrane Inst, Utrecht, Netherlands
[2] Univ Utrecht, Ctr Med, Dept Nephrol, Utrecht, Netherlands
[3] Univ Utrecht, Ctr Med, Dept Pathol, Utrecht, Netherlands
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2002年 / 13卷 / 12期
关键词
D O I
10.1097/01.ASN.0000036870.58561.81
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
An imbalance between production of reactive oxygen species (ROS) and antioxidant defense is involved in the pathogenesis of diverse chronic parenchymatous diseases. To identify the primary site of such increased oxidative stress, a lipophilic ROS-sensitive probe (C11-Bodipy 581/591) is introduced, which allows the visualization and quantification of oxidative injury using confocal fluorescence microscopy in living cells. The properties of this probe are such that its emission wavelength irreversibly shifts from red to green upon oxidation. This probe was used to identify the spatiotemporal distribution of lipid peroxidation in the rat kidney during chronic NOS inhibition, a model associated with hypertension and proteinuria. Chronic NOS inhibition resulted in increased lipid peroxidation in renal tubules but hardly any in glomeruli or blood vessels. This peroxidation preceded the loss of renal function characteristic of the model and was accompanied by parallel changes in thiobarbituric acid reactive substances in the renal cortex. Furthermore, the increase in oxidation was dependent on angiotensin II and NADPH oxidase and prevented by vitamin E. Induction of cytoprotective heat-shock protein 70 preceded lipid peroxidation, rise in BP, or proteinuria. These findings challenge the paradigm that the vascular wall is the source and target of oxidative stress in chronic parenchymatous renal disease associated with hypertension.
引用
收藏
页码:2990 / 2996
页数:7
相关论文
共 26 条
[1]  
[Anonymous], FREE RADICALS BIOL M
[2]  
Attia DM, 2001, J AM SOC NEPHROL, V12, P2585, DOI 10.1681/ASN.V12122585
[3]   ATP releases HSP-72 from protein aggregates after renal ischemia [J].
Aufricht, C ;
Lu, E ;
Thulin, G ;
Kashgarian, M ;
Siegel, NJ ;
Van Why, SK .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1998, 274 (02) :F268-F274
[4]   Hydralazine prevents endothelial dysfunction, but not the increase in superoxide production in nitric oxide-deficient hypertension [J].
Bauersachs, J ;
Bouloumié, A ;
Fraccarollo, D ;
Hu, K ;
Busse, R ;
Ertl, E .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1998, 362 (01) :77-81
[5]   Molecular chaperones in the kidney:: distribution, putative roles, and regulation [J].
Beck, FX ;
Neuhofer, W ;
Müller, E .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2000, 279 (02) :F203-F215
[6]   Heat shock protein-70 repairs proximal tubule structure after renal ischemia [J].
Bidmon, B ;
Endemann, M ;
Müller, T ;
Arbeiter, K ;
Herkner, K ;
Aufricht, C .
KIDNEY INTERNATIONAL, 2000, 58 (06) :2400-2407
[7]   Molecular chaperones in the kidney [J].
Borkan, SC ;
Gullans, SR .
ANNUAL REVIEW OF PHYSIOLOGY, 2002, 64 :503-527
[8]   Endothelial dysfunction in cardiovascular diseases - The role of oxidant stress [J].
Cai, H ;
Harrison, DG .
CIRCULATION RESEARCH, 2000, 87 (10) :840-844
[9]   C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe:: (Micro)spectroscopic characterization and validation of methodology [J].
Drummen, GPC ;
van Liebergen, LCM ;
Op den Kamp, JAF ;
Post, JA .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 (04) :473-490
[10]   7-ketocholesterol, a specific indicator of lipoprotein oxidation, and malondialdehyde in non-insulin dependent diabetes and peripheral vascular disease [J].
Dyer, RG ;
Stewart, MW ;
Mitcheson, J ;
George, K ;
Alberti, MM ;
Laker, MF .
CLINICA CHIMICA ACTA, 1997, 260 (01) :1-13