Tight frames of multidimensional wavelets

被引:47
作者
Bownik, M
机构
[1] Washington University,Department of Mathematics
关键词
tight frame; wavelets; multiresolution analysis;
D O I
10.1007/BF02648882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we deal with multidimensional wavelets arising from a multiresolution analysis with an arbitrary dilation matrix A, namely we have scaling equations phi(s)(x) = Sigma(k is an element of Zn)h(k)(s) root\det A\phi(1)(Ax-k) for s = 1,...,q, where phi(1) is a scaling function for this multiresolution and phi(2),...,phi(q) (q = \det A\)are wavelets. Orthogonality conditions for phi(1),...,phi(q) naturally impose constraints on the scaling coefficients {h(k)(s)}(k is an element of Zn)(s=1,...,q), which are then called the wavelet matric. We show how to reconstruct functions satisfying the scaling equations above and show that phi(2),...,phi(q) always constitute a tight frame with constant 1. Furthermore, we generalize the sufficient and necessary conditions of orthogonality given by Lawton and Cohen to the case of several dimensions and arbitrary dilation matrix A.
引用
收藏
页码:525 / 542
页数:18
相关论文
共 19 条
[1]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[2]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[3]  
Cohen A., 1993, Revista Matematica Iberoamericana, V9, P51, DOI [10.4171/RMI/133, DOI 10.4171/RMI/133]
[4]  
DAUBECHIES I, 1992, CBMS NSF REG C SER A
[5]  
Grochenig K., 1994, Applied and Computational Harmonic Analysis, V1, P242, DOI 10.1006/acha.1994.1011
[6]   MULTIRESOLUTION ANALYSIS, HAAR BASES, AND SELF-SIMILAR TILINGS OF RN [J].
GROCHENIG, K ;
MADYCH, WR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :556-568
[7]  
Grochenig K., 1994, J FOURIER ANAL APPL, V1, P131, DOI DOI 10.1007/S00041-001-4007-6
[8]  
HELLER P, 1992, WAVELETS TUTORIAL TH, P15
[9]  
Lagarias J., 1998, J Fourier Anal Appl, V2, P1, DOI [10.1007/s00041-001-4019-2, DOI 10.1007/S00041-001-4019-2]
[10]   Self-affine tiles in R(n) [J].
Lagarias, JC ;
Wang, Y .
ADVANCES IN MATHEMATICS, 1996, 121 (01) :21-49