On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations

被引:143
作者
Doerr, S. [1 ]
De Fabritiis, G. [1 ]
机构
[1] Univ Pompeu Fabra, Computat Biophys Lab GRIB IMIM, Barcelona 08003, Spain
关键词
DYNAMICS; MECHANISM; KINETICS; MODELS;
D O I
10.1021/ct400919u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-throughput molecular dynamics (MD) simulations are a computational method consisting of using multiple short trajectories, instead of few long ones, to cover slow biological time scales. Compared to long trajectories this method offers the possibility to start the simulations in successive batches, building a knowledgeable model of the available data to inform subsequent new simulations iteratively. Here, we demonstrate an automatic, iterative, on-the-fly method for learning and sampling molecular simulations in the context of ligand binding for the case of trypsin-benzamidine binding. The method uses Markov state models to learn a simplified model of the simulations and decide where best to sample from, achieving a converged binding affinity in approximately one microsecond, I order of magnitude faster than classical sampling. This method demonstrates for the first time the potential of adaptive sampling schemes in the case of ligand binding.
引用
收藏
页码:2064 / 2069
页数:7
相关论文
共 30 条
[1]   Architecture and Membrane Interactions of the EGF Receptor [J].
Arkhipov, Anton ;
Shan, Yibing ;
Das, Rahul ;
Endres, Nicholas F. ;
Eastwood, Michael P. ;
Wemmer, David E. ;
Kuriyan, John ;
Shaw, David E. .
CELL, 2013, 152 (03) :557-569
[2]   Adaptive Seeding: A New Method for Simulating Biologically Relevant Timescales [J].
Bowman, Gregory R. ;
Huang, Xuhui ;
Pande, Vijay S. .
BIOPHYSICAL JOURNAL, 2009, 96 (03) :575A-575A
[3]   Enhanced Modeling via Network Theory: Adaptive Sampling of Markov State Models [J].
Bowman, Gregory R. ;
Ensign, Daniel L. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (03) :787-794
[4]   High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing [J].
Buch, I. ;
Harvey, M. J. ;
Giorgino, T. ;
Anderson, D. P. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (03) :397-403
[5]   Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations [J].
Buch, Ignasi ;
Giorgino, Toni ;
De Fabritiis, Gianni .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (25) :10184-10189
[6]   Robust Perron cluster analysis in conformation dynamics [J].
Deuflhard, P ;
Weber, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 398 :161-184
[7]   ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale [J].
Harvey, M. J. ;
Giupponi, G. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (06) :1632-1639
[8]   Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics [J].
Hinrichs, Nina Singhal ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
[9]   Rapid equilibrium sampling initiated from nonequilibrium data [J].
Huang, Xuhui ;
Bowman, Gregory R. ;
Bacallado, Sergio ;
Pande, Vijay S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (47) :19765-19769
[10]   Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations [J].
Hummer, G ;
Kevrekidis, IG .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (23) :10762-10773