Reduced virulence caused by meiotic instability of the TOX2 chromosome of the maize pathogen Cochliobolus carbonum

被引:18
作者
Pitkin, JW
Nikolskaya, A
Ahn, JH
Walton, JD [1 ]
机构
[1] Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Genet Program, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Bot & Plant Pathol, E Lansing, MI 48824 USA
关键词
D O I
10.1094/MPMI.2000.13.1.80
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanisms by which pathogenic fungi evolve are poorly understood. Production of the host-selective cyclic peptide HC-toxin is controlled by a complex locus, TOX2, in the plant pathogen Cochliobolus carbonum, Crosses between toxin-producing (Tox2(+)) and toxin-nonproducing (Tox2(-)) isolates, as well as crosses between isolates in which the TOX2 genes were on chromosomes of different size, yielded progeny that had lost one or more copies of one or more of the TOX2 genes. Of approximately 200 progeny analyzed, eight (4%) had lost at least one TOX2 gene. All of them still had at least one functional copy of all of the known genes required for IHC-toxin production (HTS1, TOXA, TOXC, and TOXE), Most deletion strains could be explained by simple chromosome breaks resulting in the loss of major contiguous portions (0.8 to 1.4 Mb) of the 3.5-Mb TOX2 chromosome, whereas others had more complicated patterns. All deletion strains had normal growth and were fertile, indicating that the 1.4 Mb of DNA contained no essential housekeeping genes. Most strains were also still virulent (Tox2(+)), but two had a novel phenotype of reduced virulence (RV), characterized by smaller lesions that expanded at a reduced rate and an inability to colonize plants systemically, Although the RV strains made no detectable HC-toxin in culture, the RV phenotype was dependent on the presence of a functional copy of HTS1, which encodes the central enzyme in HC-toxin biosynthesis. We propose that the RV strains still make a low level of HC-toxin, at least in planta, and that this is due to the loss of one or more genes that contribute to, but are not absolutely required for, HC-toxin synthesis.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 25 条
[1]   Regulation of cyclic peptide biosynthesis and pathogenicity in Cochliobolus carbonum by TOXEp, a novel protein with a bZIP basic DNA-binding motif and four ankyrin repeats [J].
Ahn, JH ;
Walton, JD .
MOLECULAR AND GENERAL GENETICS, 1998, 260 (05) :462-469
[2]   A fatty acid synthase gene in Cochliobolus carbonum required for production of HC-toxin, cyclo(D-prolyl-L-alanyl-D-alanyl-L-2-Amino-9,10-epoxi-8-oxodecanoyl) [J].
Ahn, JH ;
Walton, JD .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1997, 10 (02) :207-214
[3]   Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosynthesis in Cochliobolus carbonum [J].
Ahn, JH ;
Walton, JD .
PLANT CELL, 1996, 8 (05) :887-897
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Polymorphic chromosomes bearing the Tox2 locus in Cochliobolus carbonum behave as homologs during meiosis [J].
Canada, SR ;
Dunkle, LD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (03) :996-1001
[6]  
Covert SF, 1996, MOL GEN GENET, V251, P397
[7]   Supernumerary chromosomes in filamentous fungi [J].
Covert, SF .
CURRENT GENETICS, 1998, 33 (05) :311-319
[8]  
Görlach JM, 1998, APPL ENVIRON MICROB, V64, P385
[9]   DETECTION AND ANALYSIS OF EPOXIDES WITH 4-(PARA-NITROBENZYL)-PYRIDINE [J].
HAMMOCK, LG ;
HAMMOCK, BD ;
CASIDA, JE .
BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 1974, 12 (06) :759-764
[10]  
He CZ, 1998, GENETICS, V150, P1459