Singular value decomposition based data distortion strategy for privacy protection

被引:53
作者
Xu, Shuting
Zhang, Jun [1 ]
Han, Dianwei
Wang, Jie
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
[2] Virginia State Univ, Dept Comp Informat Syst, Petersburg, VA USA
关键词
singular value decomposition; data mining; data distortion; privacy protection; security;
D O I
10.1007/s10115-006-0001-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Privacy-preserving is a major concern in the application of data mining techniques to datasets containing personal, sensitive, or confidential information. Data distortion is a critical component to preserve privacy in security-related data mining applications, such as in data mining-based terrorist analysis systems. We propose a sparsified Singular Value Decomposition (SVD) method for data distortion. We also put forth a few metrics to measure the difference between the distorted dataset and the original dataset and the degree of the privacy protection. Our experimental results using synthetic and real world datasets show that the sparsified SVD method works well in preserving privacy as well as maintaining utility of the datasets.
引用
收藏
页码:383 / 397
页数:15
相关论文
共 28 条
  • [1] Agrawal D., 2002, ACM PODS C
  • [2] AGRAWAL R, 2000, P 2009 ACM SIGMOD IN
  • [3] [Anonymous], P 2003 ACM SIGMOD IN, DOI DOI 10.1145/872757.872771
  • [4] LARGE-SCALE SPARSE SINGULAR VALUE COMPUTATIONS
    BERRY, MW
    [J]. INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1992, 6 (01): : 13 - 49
  • [5] Matrices, vector spaces, and information retrieval
    Berry, MW
    Drmac, Z
    Jessup, ER
    [J]. SIAM REVIEW, 1999, 41 (02) : 335 - 362
  • [6] Burges C. J. C., 1998, TUTORIAL SUPPORT VEC
  • [7] Kernel methods: a survey of current techniques
    Campbell, C
    [J]. NEUROCOMPUTING, 2002, 48 : 63 - 84
  • [8] DATTA S, 2003, P 2003 WORKSH DAT MI
  • [9] DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
  • [10] 2-9