Warming mineralises young and old soil carbon equally

被引:106
作者
Conen, F.
Leifeld, J.
Seth, B.
Alewell, C.
机构
[1] Univ Basel, Inst Environm Geosci, CH-4056 Basel, Switzerland
[2] ART Res Stn, CH-8046 Zurich, Switzerland
关键词
D O I
10.5194/bg-3-515-2006
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The temperature sensitivity of soil organic carbon decomposition is critical for predicting future climate change because soils store 2-3 times the amount of atmospheric carbon. Of particular controversy is the question, whether temperature sensitivity differs between young or labile and old or more stable carbon pools. Ambiguities in experimental methodology have so far limited corroboration of any particular hypothesis. Here, we show in a clear-cut approach that differences in temperature sensitivity between young and old carbon are negligible. Using the change in stable composition in transitional systems from C3 to C4 vegetation, we were able to directly distinguish the temperature sensitivity of carbon differing several decades in age. This method had several advantages over previously followed approaches. It allowed to identify release of much older carbon, avoided un-natural conditions of long-term incubations and did not require arguable curve-fitting. Our results demonstrate that feedbacks of the carbon cycle on climate change are driven equally by young and old soil organic carbon.
引用
收藏
页码:515 / 519
页数:5
相关论文
共 28 条
[1]   Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2 [J].
Andrews, JA ;
Matamala, R ;
Westover, KM ;
Schlesinger, WH .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (05) :699-706
[2]   NATURAL C-13 ABUNDANCE AS A TRACER FOR STUDIES OF SOIL ORGANIC-MATTER DYNAMICS [J].
BALESDENT, J ;
MARIOTTI, A ;
GUILLET, B .
SOIL BIOLOGY & BIOCHEMISTRY, 1987, 19 (01) :25-30
[3]   Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs [J].
Biasi, C ;
Rusalimova, O ;
Meyer, H ;
Kaiser, C ;
Wanek, W ;
Barsukov, P ;
Junger, H ;
Richter, A .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2005, 19 (11) :1401-1408
[4]   Recalcitrant soil organic materials mineralize more efficiently at higher temperatures [J].
Bol, R ;
Bolger, T ;
Cully, R ;
Little, D .
JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2003, 166 (03) :300-307
[5]   Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J].
Davidson, EA ;
Janssens, IA .
NATURE, 2006, 440 (7081) :165-173
[6]   Decomposition of peat from upland boreal forest: Temperature dependence and sources of respired carbon [J].
Dioumaeva, I ;
Trumbore, S ;
Schuur, EAG ;
Goulden, ML ;
Litvak, M ;
Hirsch, AI .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 108 (D3)
[7]   Is resistant soil organic matter more sensitive to temperature than the labile organic matter? [J].
Fang, C ;
Smith, P ;
Smith, JU .
BIOGEOSCIENCES, 2006, 3 (01) :65-68
[8]   Similar response of labile and resistant soil organic matter pools to changes in temperature [J].
Fang, CM ;
Smith, P ;
Moncrieff, JB ;
Smith, JU .
NATURE, 2005, 433 (7021) :57-59
[9]   Litter quality and the temperature sensitivity of decomposition [J].
Fierer, N ;
Craine, JM ;
McLauchlan, K ;
Schimel, JP .
ECOLOGY, 2005, 86 (02) :320-326
[10]   Controls on microbial CO2 production:: a comparison of surface and subsurface soil horizons [J].
Fierer, N ;
Allen, AS ;
Schimel, JP ;
Holden, PA .
GLOBAL CHANGE BIOLOGY, 2003, 9 (09) :1322-1332