Intramyocellular lipids and insulin resistance

被引:128
作者
Machann, J
Häring, H
Schick, F
Stumvoll, M
机构
[1] Univ Tubingen, Dept Endocrinol Metab & Pathobiochem, Tubingen, Germany
[2] Univ Tubingen, Dept Diagnost Radiol, Sect Expt Radiol, Tubingen, Germany
关键词
insulin sensitivity; magnetic resonance spectroscopy; type; 2; diabetes;
D O I
10.1111/j.1462-8902.2004.00339.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Lipids are stored not only in adipocytes but also 'ectopically' in tissues such as muscle, liver, beta cells and others. From a metabolic perspective, intramyocellular lipids (IMCLs) have recently become a focus of interest. This review summarizes history, measurement techniques and interpretation of muscle lipid data. Problems in biopsies with the separation of those metabolically active lipid droplets in the cytoplasm of myocytes from further lipids in adipocytes are discussed as well as considerations important for analysis of correlations between IMCL content and insulin sensitivity under various circumstances. The relatively new approach to non-invasive assessment of the IMCL content by magnetic resonance spectroscopy (MRS) is described in detail and exemplary spectra from different skeletal muscle types in humans are presented. The MRS technique allows human examinations of large cohorts for a detailed assessment of the interactions among metabolic parameters such as age, measures of adiposity, hormonal and ethnic factors and insulin resistance. IMCLs are generally positively correlated with measures of obesity and negatively with insulin sensitivity. Paradoxically, physical fitness (maximal aerobic capacity) increases both IMCL content and insulin sensitivity and therefore has to be taken into account as a confounding factor. Intervention studies with MRS further allowed to elucidate the regulation of IMCL. Molecular mechanisms and potential genetic factors on IMCL regulation are discussed as well as possible mechanisms of current treatment strategies for improving insulin sensitivity.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 74 条
[1]   Activators of peroxisome proliferator-activated receptor γ have depot-specific effects on human preadipocyte differentiation [J].
Adams, M ;
Montague, CT ;
Prins, JB ;
Holder, JC ;
Smith, SA ;
Sanders, L ;
Digby, JE ;
Sewter, CP ;
Lazar, MA ;
Chatterjee, VKK ;
O'Rahilly, S .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (12) :3149-3153
[2]   A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling - Evidence from transfection studies [J].
Almind, K ;
Inoue, G ;
Pedersen, O ;
Kahn, CR .
JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (11) :2569-2575
[3]   Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans [J].
Bachmann, OP ;
Dahl, DB ;
Brechtel, K ;
Machann, J ;
Haap, M ;
Maier, T ;
Loviscach, M ;
Stumvoll, M ;
Claussen, CA ;
Schick, F ;
Häring, HU ;
Jacob, S .
DIABETES, 2001, 50 (11) :2579-2584
[4]   A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance [J].
Baier, LJ ;
Permana, PA ;
Yang, XL ;
Pratley, RE ;
Hanson, RL ;
Shen, GQ ;
Mott, D ;
Knowler, WC ;
Cox, NJ ;
Horikawa, Y ;
Oda, N ;
Bell, GI ;
Bogardus, C .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (07) :R69-R73
[5]   MECHANISMS OF FATTY ACID-INDUCED INHIBITION OF GLUCOSE-UPTAKE [J].
BODEN, G ;
CHEN, XH ;
RUIZ, J ;
WHITE, JV ;
ROSSETTI, L .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (06) :2438-2446
[6]   Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects [J].
Boden, G ;
Lebed, B ;
Schatz, M ;
Homko, C ;
Lemieux, S .
DIABETES, 2001, 50 (07) :1612-1617
[7]   Role of fatty acids in the pathogenesis of insulin resistance and NIDDM [J].
Boden, G .
DIABETES, 1997, 46 (01) :3-10
[8]   Free fatty acids in obesity and type 2 diabetes:: defining their role in the development of insulin resistance and β-cell dysfunction [J].
Boden, G ;
Shulman, GI .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2002, 32 :14-23
[9]   In vivo determination of intra-myocellular lipids in human muscle by means of localized H-1-MR-spectroscopy [J].
Boesch, C ;
Slotboom, J ;
Hoppeler, H ;
Kreis, R .
MAGNETIC RESONANCE IN MEDICINE, 1997, 37 (04) :484-493
[10]  
Boesch C, 2000, ANN NY ACAD SCI, V904, P25