Scanning the intracellular S6 activation gate in the shaker K+ channel

被引:155
作者
Hackos, DH [1 ]
Chang, TH [1 ]
Swartz, KJ [1 ]
机构
[1] NINCDS, Mol Physiol & Biophys Unit, NIH, Bethesda, MD 20892 USA
关键词
Kv channel; voltage-dependent gating; scanning mutagenesis; pore occlusion; closed gate;
D O I
10.1085/jgp.20028569
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
In Kv channels, an activation gate is thought to be located near the intracellular entrance to the ion conduction pore. Although the COOH terminus of the S6 segment has been implicated in forming the gate structure, the residues positioned at the occluding part of the gate remain undetermined. We use a mutagenic scanning approach in the Shaker Kv channel, mutating each residue in the S6 gate region (T469-Y485) to alanine, tryptophan, and aspartate to identify positions that are insensitive to mutation and to find mutants that disrupt the gate. Most mutants open in a steeply voltage-dependent manner and close effectively at negative voltages, indicating that the gate structure can both support ion flux when open and prevent it when closed. We find several mutant channels where macroscopic ionic currents are either very small or undetectable, and one mutant that displays constitutive currents at negative voltages. Collective examination of the three types of substitutions support the notion that the intracellular portion of S6 forms an activation gate and identifies V478 and F481 as candidates for occlusion of the pore in the closed state.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 42 条
[2]   CHARGE MOVEMENT ASSOCIATED WITH OPENING AND CLOSING OF ACTIVATION GATES OF NA CHANNELS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1974, 63 (05) :533-552
[4]   INNER QUATERNARY AMMONIUM ION RECEPTOR IN POTASSIUM CHANNELS OF NODE OF RANVIER [J].
ARMSTRONG, CM ;
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1972, 59 (04) :388-+
[5]   Molecular dynamics of the KcsA K+ channel in a bilayer membrane [J].
Bernèche, S ;
Roux, B .
BIOPHYSICAL JOURNAL, 2000, 78 (06) :2900-2917
[6]   STRUCTURAL BASIS OF AMINO-ACID ALPHA-HELIX PROPENSITY [J].
BLABER, M ;
ZHANG, XJ ;
MATTHEWS, BW .
SCIENCE, 1993, 260 (5114) :1637-1640
[7]   Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel [J].
del Camino, D ;
Yellen, G .
NEURON, 2001, 32 (04) :649-656
[8]   Blocker protection in the pore of a voltage-gated K+ channel and its structural implications [J].
del Camino, D ;
Holmgren, M ;
Liu, Y ;
Yellen, G .
NATURE, 2000, 403 (6767) :321-325
[9]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[10]   PURIFICATION AND CHARACTERIZATION OF 3 INHIBITORS OF VOLTAGE-DEPENDENT K+ CHANNELS FROM LEIURUS-QUINQUESTRIATUS VAR HEBRAEUS VENOM [J].
GARCIA, ML ;
GARCIACALVO, M ;
HIDALGO, P ;
LEE, A ;
MACKINNON, R .
BIOCHEMISTRY, 1994, 33 (22) :6834-6839