Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3

被引:889
作者
Wu, Gang [1 ]
Poethig, R. Scott [1 ]
机构
[1] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
来源
DEVELOPMENT | 2006年 / 133卷 / 18期
关键词
miRNA; heterochrony; phase change;
D O I
10.1242/dev.02521
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
SPL3, SPL4 and SPL5 (SPL3/4/5) are closely related members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE family of transcription factors in Arabidopsis, and have a target site for the microRNA miR156 in their 3' UTR. The phenotype of Arabidopsis plants constitutively expressing miR156-sensitive and miR156-insensitive forms of SPL3/4/5 revealed that all three genes promote vegetative phase change and flowering, and are strongly repressed by miR156. Constitutive expression of miR156a prolonged the expression of juvenile vegetative traits and delayed flowering. This phenotype was largely corrected by constitutive expression of a miR156-insensitive form of SPL3. The juvenile-to-adult transition is accompanied by a decrease in the level of miR156 and an increase in the abundance of SPL3 mRNA. The complementary effect of hasty on the miR156 and SPL3 transcripts, as well as the miR156-dependent temporal expression pattern of a 35S::GUS-SPL3 transgene, suggest that the decrease in miR156 is responsible for the increase in SPL3 expression during this transition. SPL3 mRNA is elevated by mutations in ZIPPY/AGO7, RNA DEPENDENT RNA POLYMERASE 6 (RDR6) and SUPPRESSOR OF GENE SILENCING 3 (SGS3), indicating that it is directly or indirectly regulated by RNAi. However, our results indicate that RNAi does not contribute to the temporal expression pattern of this gene. We conclude that vegetative phase change in Arabidopsis is regulated by an increase in the expression of SPL3 and probably also SPL4 and SPL5, and that this increase is a consequence of a decrease in the level of miR156.
引用
收藏
页码:3539 / 3547
页数:9
相关论文
共 59 条
[1]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]   Control of developmental timing in Caenorhabditis elegans [J].
Ambros, V .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2000, 10 (04) :428-433
[4]   Cloning and characterization of micro-RNAs from moss [J].
Arazi, T ;
Talmor-Neiman, M ;
Stav, R ;
Riese, M ;
Huijser, P ;
Baulcombe, DC .
PLANT JOURNAL, 2005, 43 (06) :837-848
[5]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[6]   Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs [J].
Baumberger, N ;
Baulcombe, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (33) :11928-11933
[7]   The timing of developmental transitions in plants [J].
Baurle, Isabel ;
Dean, Caroline .
CELL, 2006, 125 (04) :655-664
[8]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[9]   HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis [J].
Bollman, KM ;
Aukerman, MJ ;
Park, MY ;
Hunter, C ;
Berardini, TZ ;
Poethig, RS .
DEVELOPMENT, 2003, 130 (08) :1493-1504
[10]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291