The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP

被引:697
作者
Ricquier, D [1 ]
Bouillaud, F [1 ]
机构
[1] CNRS, Ctr Rech Endocrinol Mol & Dev, Unit 9078, F-92190 Meudon, France
关键词
carrier; energy; mitochondria; proton; thermogenesis;
D O I
10.1042/0264-6021:3450161
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Animal and plant uncoupling protein (UCP) homologues form a subfamily of mitochondrial carriers that are evolutionarily related and possibly derived from a proton/anion transporter ancestor. The brown adipose tissue (BAT) UCP1 has a marked and strongly regulated uncoupling activity, essential to the maintenance of body temperature in small mammals. UCP homologues identified in plants are induced in a cold environment and may be involved in resistance to chilling. The biochemical activities and biological functions of the recently identified mammalian UCP2 and UCP3 are not well known. However, recent data support a role for these UCPs in State 4 respiration, respiration uncoupling and proton leaks in mitochondria. Moreover, genetic studies suggest that UCP2 and UCP3 play a part in energy expenditure in humans. The UCPs may also be involved in adaptation of cellular metabolism to an excessive supply of substrates in order to regulate the ATP level, the NAD(+)/NADH ratio and various metabolic pathways, and to contain superoxide production. A major goal will be the analysis of mice that either lack the UCP2 or UCP3 gene or overexpress these genes. Other aims will be to investigate the possible roles of UCP2 and UCP3 in response to oxidative stress, lipid peroxidation, inflammatory processes, fever and regulation of temperature in certain specific parts of the body.
引用
收藏
页码:161 / 179
页数:19
相关论文
共 268 条
[1]   A NOVEL REGULATORY PATHWAY OF BROWN FAT THERMOGENESIS - RETINOIC ACID IS A TRANSCRIPTIONAL ACTIVATOR OF THE MITOCHONDRIAL UNCOUPLING PROTEIN GENE [J].
ALVAREZ, R ;
DEANDRES, J ;
YUBERO, P ;
VINAS, O ;
MAMPEL, T ;
IGLESIAS, P ;
GIRALT, M ;
VILLARROYA, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (10) :5666-5673
[2]   THE UNCOUPLING PROTEIN FROM BROWN FAT MITOCHONDRIA IS RELATED TO THE MITOCHONDRIAL ADP ATP CARRIER - ANALYSIS OF SEQUENCE HOMOLOGIES AND OF FOLDING OF THE PROTEIN IN THE MEMBRANE [J].
AQUILA, H ;
LINK, TA ;
KLINGENBERG, M .
EMBO JOURNAL, 1985, 4 (09) :2369-2376
[3]   CYSTEINE RESIDUES ARE NOT ESSENTIAL FOR UNCOUPLING PROTEIN FUNCTION [J].
ARECHAGA, I ;
RAIMBAULT, S ;
PRIETO, S ;
LEVIMEYRUEIS, C ;
ZARAGOZA, P ;
MIROUX, B ;
RICQUIER, D ;
BOUILLAUD, F ;
RIAL, E .
BIOCHEMICAL JOURNAL, 1993, 296 :693-700
[4]   Structure and organization of the human uncoupling protein 2 gene and identification of a common biallelic variant in Caucasian and African-American subjects [J].
Argyropoulos, G ;
Brown, AM ;
Peterson, R ;
Likes, CE ;
Watson, DK ;
Garvey, WT .
DIABETES, 1998, 47 (04) :685-687
[5]   Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes [J].
Argyropoulos, G ;
Brown, AM ;
Willi, SM ;
Zhu, JG ;
He, YF ;
Reitman, M ;
Gevao, SM ;
Spruill, I ;
Garvey, WT .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (07) :1345-1351
[6]   Up-regulation of UCP-2 gene expression by PPAR agonists in preadipose and adipose cells [J].
Aubert, J ;
Champigny, O ;
SaintMarc, P ;
Negrel, R ;
Collins, S ;
Ricquier, D ;
Ailhaud, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 238 (02) :606-611
[7]   Expression of mRNAs encoding uncoupling proteins in human skeletal muscle - Effects of obesity and diabetes [J].
Bao, S ;
Kennedy, A ;
Wojciechowski, B ;
Wallace, P ;
Ganaway, E ;
Garvey, WT .
DIABETES, 1998, 47 (12) :1935-1940
[8]   Uncoupling protein-2 messenger ribonucleic acid expression during very-low-calorie diet in obese premenopausal women [J].
Barbe, P ;
Millet, L ;
Larrouy, D ;
Galitzky, J ;
Berlan, M ;
Louvet, JP ;
Langin, D .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1998, 83 (07) :2450-2453
[9]   Transgenic UCP1 in white adipocytes modulates mitochondrial membrane potential [J].
Baumruk, F ;
Flachs, P ;
Horákova, M ;
Floryk, D ;
Kopecky, J .
FEBS LETTERS, 1999, 444 (2-3) :206-210
[10]   H+ transport by uncoupling protein (UCP-1) Is dependent on a histidine pair, absent in UCP-2 and UCP-3 [J].
Bienengraeber, M ;
Echtay, KS ;
Klingenberg, M .
BIOCHEMISTRY, 1998, 37 (01) :3-8