The influence of correlated crustal signals in modelling the main geomagnetic field

被引:15
作者
RygaardHjalsted, C [1 ]
Constable, CG [1 ]
Parker, RL [1 ]
机构
[1] UNIV CALIF SAN DIEGO,SCRIPPS INST OCEANOG,INST GEOPHYS & PLANETARY PHYS,LA JOLLA,CA 92093
关键词
core-mantle boundary; crustal magnetization; geomagnetism;
D O I
10.1111/j.1365-246X.1997.tb01866.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Algorithms used in geomagnetic main-field modelling have for the most part treated the noise in the field measurements as if it were white. A major component of the noise consists of the field due to magnetization in the crust and it has been realized for some time that such signals are highly correlated at satellite altitude. Hence approximation by white noise, while of undoubted utility, is of unknown validity. Langel, Estes & Sabaka (1989) were the first to evaluate the influence of correlations in the crustal magnetic field on main-field models. In this paper we study two plausible statistical models for the crustal magnetization described by Jackson (1994), in which the magnetization is a realization of a stationary, isotropic, random process. At a typical satellite altitude the associated fields exhibit significant correlation over ranges as great as 15 degrees or more, which introduces off-diagonal elements into the covariance matrix, elements that have usually been neglected in modelling procedures. Dealing with a full covariance matrix for a large data set would present a formidable computational challenge, brit fortunately most of the entries in the covariance matrix are so small that they can be replaced by zeros. The resultant matrix comprises only about 3 per cent non-zero entries and thus we can take advantage of efficient sparse matrix techniques to solve the numerical system. We construct several main-field models based on vertical-component data from a selected 5 degrees by 5 degrees data set derived from the Magsat mission. Models with and without off-diagonal terms are compared. For one of the two Jackson crustal models, k(3), we find significant changes in the main-field coefficients, with maximum discrepancies near degree 11 of about 27 per cent. The second crustal spectrum gives rise to much smaller effects for the data set used here, because the correlation lengths are typically shorter than the data spacing. k(4) also significantly underpredicts the observed magnetic spectrum around degree 15. We conclude that there is no difficulty in computing main-field models that include off-diagonal terms in the covariance matrix when sparse matrix techniques are employed; we find that there may be important effects in the computed models, particularly if we wish to make full use of dense data sets. Until a definitive crustal field spectrum has been determined, the precise size of the effect remains uncertain. Obtaining such a statistical model should be a high priority in preparation for the analysis of future low-noise satellite data.
引用
收藏
页码:717 / 726
页数:10
相关论文
共 31 条
[1]   SCALAR MAGNETIC ANOMALY MAPS OF EARTH DERIVED FROM POGO AND MAGSAT DATA [J].
ARKANIHAMED, J ;
LANGEL, RA ;
PURUCKER, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1994, 99 (B12) :24075-24090
[2]  
Backus G, 1996, Foundations of geomagnetism
[3]   DERIVATION OF A GEOMAGNETIC MODEL TO N=63 [J].
CAIN, JC ;
WANG, ZG ;
KLUTH, C ;
SCHMITZ, DR .
GEOPHYSICAL JOURNAL-OXFORD, 1989, 97 (03) :431-441
[4]   NEW GLOBAL VECTOR MAGNETIC ANOMALY MAPS DERIVED FROM MAGSAT DATA [J].
COHEN, Y ;
ACHACHE, J .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B7) :10783-+
[5]   GEOMAGNETIC-FIELD MODELS INCORPORATING FROZEN-FLUX CONSTRAINTS [J].
CONSTABLE, CG ;
PARKER, RL ;
STARK, PB .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1993, 113 (02) :419-433
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[7]  
GEORGE A, 1981, SIAM REV, V31, P1
[8]  
GILBERT JR, 1992, SIAM J MAT ANAL, V13, P1333
[9]  
Golub G.H., 1985, MATRIX COMPUTATIONS
[10]   CAN EARTHS MAGNETIC-FIELD BE SUSTAINED BY CORE OSCILLATIONS [J].
GUBBINS, D .
GEOPHYSICAL RESEARCH LETTERS, 1975, 2 (09) :409-412