Extracellular BCL2 Proteins Are Danger-Associated Molecular Patterns That Reduce Tissue Damage in Murine Models of Ischemia-Reperfusion Injury

被引:32
作者
Iwata, Akiko [1 ]
Morgan-Stevenson, Vicki [1 ]
Schwartz, Barbara [2 ]
Liu, Li [2 ]
Tupper, Joan [2 ]
Zhu, Xiaodong [2 ]
Harlan, John [2 ]
Winn, Robert [1 ]
机构
[1] Univ Washington, Dept Surg, Seattle, WA 98195 USA
[2] Univ Washington, Dept Med, Seattle, WA USA
来源
PLOS ONE | 2010年 / 5卷 / 02期
基金
美国国家卫生研究院;
关键词
MEDIATED GENE-TRANSFER; BH4; DOMAIN; ANTIAPOPTOTIC PROTEIN; CEREBROSPINAL-FLUID; HEPATIC ISCHEMIA; CELL-DEATH; APOPTOSIS; EXPRESSION; SERUM; PEPTIDE;
D O I
10.1371/journal.pone.0009103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Ischemia-reperfusion (I/R) injury contributes to organ dysfunction in a variety of clinical disorders, including myocardial infarction, stroke, organ transplantation, and hemorrhagic shock. Recent investigations have demonstrated that apoptosis as an important mechanism of cell death leading to organ dysfunction following I/R. Intracellular danger-associated molecular patterns (DAMPs) released during cell death can activate cytoprotective responses by engaging receptors of the innate immune system. Methodology/Principal Findings: Ischemia was induced in the mouse hind limb by tourniquet or in the heart by coronary artery ligation. Reperfusion injury of skeletal or cardiac muscle was markedly reduced by intraperitoneal or subcutaneous injection of recombinant human (rh)BCL2 protein or rhBCL2-related protein A1 (BCL2A1) (50 ng/g) given prior to ischemia or at the time of reperfusion. The cytoprotective activity of extracellular rhBCL2 or rhBCL2A1 protein was mapped to the BH4 domain, as treatment with a mutant BCL2 protein lacking the BH4 domain was not protective, whereas peptides derived from the BH4 domain of BCL2 or the BH4-like domain of BCL2A1 were. Protection by extracellular rhBCL2 or rhBCL2A1 was associated with a reduction in apoptosis in skeletal and cardiac muscle following I/R, concomitant with increased expression of endogenous mouse BCL2 (mBCL2) protein. Notably, treatment with rhBCL2A1 protein did not protect mice deficient in toll-like receptor-2 (TLR2) or the adaptor protein, myeloid differentiation factor-88 (MyD88). Conclusions/Significance: Treatment with cytokine-like doses of rhBCL2 or rhBCL2A1 protein or BH4-domain peptides reduces apoptosis and tissue injury following I/R by a TLR2-MyD88-dependent mechanism. These findings establish a novel extracellular cytoprotective activity of BCL2 BH4-domain proteins as potent cytoprotective DAMPs.
引用
收藏
页数:11
相关论文
共 60 条
[1]   Toll-like receptor 2 is protective of ischemia-reperfusion-mediated small-bowel injury in a murine model [J].
Aprahamian, Charles J. ;
Lorenz, Robin G. ;
Harmon, Carroll M. ;
Dimmit, Reed A. .
PEDIATRIC CRITICAL CARE MEDICINE, 2008, 9 (01) :105-109
[2]   TOLL-LIKE RECEPTORS IN ISCHEMIA-REPERFUSION INJURY [J].
Arumugam, Thiruma V. ;
Okun, Eitan ;
Tang, Sung-Chun ;
Thundyil, John ;
Taylor, Stephen M. ;
Woodruff, Trent M. .
SHOCK, 2009, 32 (01) :4-16
[3]   Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands [J].
Barbalat, Roman ;
Lau, Laura ;
Locksley, Richard M. ;
Barton, Gregory M. .
NATURE IMMUNOLOGY, 2009, 10 (11) :1200-U87
[4]   DAMPs, PAMPs and alarmins: all we need to know about danger [J].
Bianchi, Marco E. .
JOURNAL OF LEUKOCYTE BIOLOGY, 2007, 81 (01) :1-5
[5]   Reduction of ischemia-reperfusion injury of the liver by in vivo adenovirus-mediated gene transfer of the antiapoptotic bcl-2 gene [J].
Bilbao, G ;
Contreras, JL ;
Eckhoff, DE ;
Mikheeva, G ;
Krasnykh, V ;
Douglas, JT ;
Thomas, FT ;
Thomas, JM ;
Curiel, DT .
ANNALS OF SURGERY, 1999, 230 (02) :185-193
[6]  
Brocheriou V, 2000, J GENE MED, V2, P326, DOI 10.1002/1521-2254(200009/10)2:5<326::AID-JGM133>3.0.CO
[7]  
2-1
[8]  
Brown GD, 2006, NAT REV IMMUNOL, V6, P33, DOI 10.1038/nri1745
[9]   Statistical Interpretation of CA125 and Bcl-2 in Serum of Patients With Late Stage Ovarian Cancer [J].
Camlica, Hakan ;
Duranyildiz, Dery ;
Tas, Faruk ;
Yasasever, Vildan .
AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2008, 31 (06) :585-588
[10]   Exogenous BH4/Bcl-2 peptide reverts coronary endothelial cell apoptosis induced by oxidative stress [J].
Cantara, S ;
Donnini, S ;
Giachetti, A ;
Thorpe, PE ;
Ziche, M .
JOURNAL OF VASCULAR RESEARCH, 2004, 41 (02) :202-207