Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration

被引:578
作者
Arraud, N. [1 ]
Linares, R. [1 ]
Tan, S. [1 ]
Gounou, C. [1 ]
Pasquet, J. -M. [2 ]
Mornet, S. [3 ]
Brisson, A. R. [1 ]
机构
[1] Univ Bordeaux, IPB, CNRS, UMR 5248,CBMN, Pessac, France
[2] Univ Bordeaux, INSERM, UMR U1035, Bordeaux, France
[3] CNRS, UPR ICMCB 9048, Pessac, France
关键词
blood plasma; cell-derived microparticles; cryo-electron microscopy; flow cytometry; immunogold techniques; CELL-DERIVED MICROPARTICLES; ATOMIC-FORCE MICROSCOPY; TISSUE FACTOR; MEMBRANE-VESICLES; CIRCULATING MICROPARTICLES; PLATELET MICROPARTICLES; EXOSOMES; MICROVESICLES; STANDARDIZATION; RNA;
D O I
10.1111/jth.12554
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundPlasma and other body fluids contain membranous extracellular vesicles (EVs), which are considered to derive from activated or apoptotic cells. EVs participate in physiological and pathological processes and have potential applications in diagnostics or therapeutics. Knowledge on EVs is, however, limited, mainly due to their sub-micrometer size and to intrinsic limitations in methods applied for their characterization. ObjectivesOur aim was to provide a comprehensive description of EVs from plasma of healthy subjects. MethodsCryo-transmission electron microscopy combined with receptor-specific gold labeling was used to reveal the morphology, size and phenotype of EVs. An original approach based on sedimentation on electron microscopy grids was developed for enumerating EVs. A correlation was performed between conventional flow cytometry and electron microscopy results. ResultsWe show that platelet-free plasma samples contain spherical EVs, 30nm to 1m in diameter, tubular EVs, 1-5m long, and membrane fragments, 1-8m large. We show that only a minority of EVs expose the procoagulant lipid phosphatidylserine, in contrast to the classical theory of EV formation. In addition, the concentrations of the main EV sub-populations are determined after sedimentation on EM grids. Finally, we show that conventional flow cytometry, the main method of EV characterization, detects only about 1% of them. ConclusionThis study brings novel insights on EVs from normal plasma and provides a reference for further studies of EVs in disease situations.
引用
收藏
页码:614 / 627
页数:14
相关论文
共 74 条
[1]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[2]  
ANDREE HAM, 1990, J BIOL CHEM, V265, P4923
[3]   Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia [J].
Aras, O ;
Shet, A ;
Bach, RR ;
Hysjulien, JL ;
Slungaard, A ;
Hebbel, RP ;
Escolar, G ;
Jilma, B ;
Key, NS .
BLOOD, 2004, 103 (12) :4545-4553
[4]   Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics [J].
Ashcroft, B. A. ;
de Sonneville, J. ;
Yuana, Y. ;
Osanto, S. ;
Bertina, R. ;
Kuil, M. E. ;
Oosterkamp, T. H. .
BIOMEDICAL MICRODEVICES, 2012, 14 (04) :641-649
[5]   Measurement of circulating cell-derived microparticles by flow cytometry: Sources of variability within the assay [J].
Ayers, Lisa ;
Kohler, Malcolm ;
Harrison, Paul ;
Sargent, Ian ;
Dragovic, Rebecca ;
Schaap, Marianne ;
Nieuwland, Rienk ;
Brooks, Susan A. ;
Ferry, Berne .
THROMBOSIS RESEARCH, 2011, 127 (04) :370-377
[6]   CHANGES IN MEMBRANE PHOSPHOLIPID DISTRIBUTION DURING PLATELET ACTIVATION [J].
BEVERS, EM ;
COMFURIUS, P ;
ZWAAL, RFA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1983, 736 (01) :57-66
[7]   Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner [J].
Biró, É ;
Sturk-Maquelin, KN ;
Vogel, GMT ;
Meuleman, DG ;
Smit, MJ ;
Hack, CE ;
Sturk, A ;
Nieuwland, R .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2003, 1 (12) :2561-2568
[8]   Platelets Amplify Inflammation in Arthritis via Collagen-Dependent Microparticle Production [J].
Boilard, Eric ;
Nigrovic, Peter A. ;
Larabee, Katherine ;
Watts, Gerald F. M. ;
Coblyn, Jonathan S. ;
Weinblatt, Michael E. ;
Massarotti, Elena M. ;
Remold-O'Donnell, Eileen ;
Farndale, Richard W. ;
Ware, Jerry ;
Lee, David M. .
SCIENCE, 2010, 327 (5965) :580-583
[9]   Circulating microparticles - A potential prognostic marker for atherosclerotic vascular disease [J].
Boulanger, Chantal M. ;
Amabile, Nicolas ;
Tedgui, Alain .
HYPERTENSION, 2006, 48 (02) :180-186
[10]   Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review [J].
Bratosin, D ;
Mazurier, J ;
Tissier, JP ;
Estaquier, J ;
Huart, JJ ;
Ameisen, JC ;
Aminoff, D ;
Montreuil, J .
BIOCHIMIE, 1998, 80 (02) :173-195